Statistical optimization of amorphous iron phosphate: inorganic sol–gel synthesis-sodium potential insertion

Author:

Maarouf Fz.,Saoiabi S.,Azzaoui K.,Chrika C.,Khalil H.,Elkaouni S.,Lhimr S.,Boubker O.,Hammouti B.,Jodeh S.ORCID

Abstract

AbstractIron phosphate, Fe2 (HPO4)3*4H2O, is synthesized at ambient temperature, using the inorganic sol–gel method coupled to the microwave route. The experimental conditions for the gelling of Fe (III)-H3PO4 system are previously defined. Potentiometric Time Titration (PTT) and Potentiometric Mass Titration (PMT) investigate the acid–base surface chemistry of obtained phosphate. Variations of surface charge with the contact time, Q a function of T, are examined for time contact varying in the range 0–72 h. The mass suspensions used for this purpose are 0.75, 1.25 and 2.5 g L−1. The point of zero charge (PZC) and isoelectric point (IEP) are defined using the derivative method examining the variations $$\frac{{{\text{dpH}}}}{{{\text{d}}t}} = f\left( {{\text{pH}}} \right)$$ dpH d t = f pH , at lower contact time. A shift is observed for PZC and IEP towards low values that are found to be 2.2 ± 0.2 and 1.8 ± 0.1, respectively. In acidic conditions, the surface charge behavior of synthesized phosphate is dominated by $$\overline{{ > {\text{POH}}}}$$ > POH ¯ group which pKa = 2.45 ± 0.15. Q against T titration method is performed for synthesized Fe2 (HPO4)3*4H2O in NaCl electrolytes. The maximal surface charge (Q) is achieved at the low solid suspension. Hence, for m = 0.75 g L−1, Q value of 50 coulombs is carried at μ = 0.1 and pH around 12, while charge value around 22 coulombs is reached in the pH range: 3–10. The effect of activation time, Q and pH on sodium insertion in iron phosphate, were fully evaluated. To determine the optimal conditions of the studied process, mathematical models are used develop response surfaces in order to characterize the most significant sodium interactions according to the variation of the pH, Q, the contact time and the contents of the synthesized material.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Reference32 articles.

1. Kuz S, Kageura J, Matsumoto S, Nakayama T, Makidera M, Saka M, Yamaguchi T, Yamamoto T, Nakane K. Development of a sodium ion secondary battery. Sumimoto Kagarku. 2013;2013:1–13.

2. Hwang J-Y, Myung S-T, Sun Y-K. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46:3529.

3. Mathew V, Kim S, Kang J, Gim J, Song J, Baboo JP, Park W, Ahn D, Han J, Gu L, Wang Y, Hu Y-S, Sunn Y-K, Kim J. Amorphous iron phosphate: potential host forvarious charge carrier ions. NPG Asia Mater. 2015;7:e149.

4. Bonilla MR, Lozano A, Escribano B, Carrasco J, Akhmatskay E. Revealing the mechanism of sodium diffusion in NaxFePO4 using an improved force field. J Phys Chem C. 2018;122(15):8065–75.

5. Yu F, Zhang L, Li Y, An Y, Zhu M, Dai B. Mechanism studies of LiFePO4 cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction. Royal Soc Chem Adv. 2014;4(97):54576–602.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3