Effect of protic surfactant ionic liquids based on ethanolamines on solubility of acetaminophen at several temperatures: measurement and thermodynamic correlation

Author:

Gondoghdi Parisa Akbarzadeh,Shekaari Hemayat,Mokhtarpour Masumeh,Sardroud Mirhesam Miraghazadeh,Afkari Ramin,Khorsandi Mohammad

Abstract

AbstractAbsolute qualifications with the application of protic ionic liquids (PILs) and a recognition of the numerous thermophysical features of these materials are required in various processes. Due to the wonderful applications of these compounds and their high potential in the chemical and pharmaceutical industries, there is a particular eagerness to utilize these PILs in drug solubility and delivery area. The aim of this investigation was to explore the solubility of the acetaminophen (ACP) in three PILs base on ethanolamine laurate [(2-hydroxyethylammonium laurate [MEA]La), (bis(2-hydroxyethyl)ammonium laurate [DEA]La), and ( tris(2-hydroxyethyl)ammonium laurate [TEA]La)]. The shake flask method has been employed in this study, and the conditions were set at T = (298.15–313.15) K and atmospheric pressure. Moreover, the experimental solubility data was correlated using a variety of empirical and thermodynamic models, encompassing e-NRTL and Wilson activity coefficient models and the empirical models such as Van’t Hoff-Jouyban-Acree and Modified Apelblat-Jouyban-Acree. Their performance for the system containing [MEA]La follow the trend for activity coefficient models and empirical respectively: the Wilson > e-NRTL and Modified Apelblat–Jouyban–Acree > Van’t Hoff–Jouyban–Acree. On the other hand, [DEA]La and [TEA]La PILs followed slightly different trend for activity coefficient models and empirical respectively: the Wilson > e-NRTL and Van’t Hoff–uyban–Acree > Modified Apelblat–Jouyban–Acree. The Van’t Hoff and Gibbs equations were used to determine the thermodynamic properties of dissolution in the studied systems.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3