Implementation of green-assessed nanotechnology and quality by design approach for development of optical sensor for determination of tobramycin in ophthalmic formulations and spiked human plasma

Author:

El-Maraghy Christine M.,Medhat Passant M.,Hathout Rania M.,Ayad Miriam F.,Fares Nermine V.

Abstract

AbstractA fast eco-friendly colorimetric method was developed for the determination of Tobramycin in drug substance, ophthalmic formulations, and spiked human plasma using silver nanoparticles optical sensor. Even though tobramycin is non-UV–visible absorbing, the developed method is based on measuring the absorbance quenching of silver nanoparticles resulting from the interaction with tobramycin. Different factors affecting the absorbance intensity were studied as; silver nanoparticle concentration, pH, buffer type, and reaction time using quality by design approach. Validation of the proposed method was performed according to ICH guidelines and was found to be accurate, precise, and sensitive. The linearity range of tobramycin was 0.35–4.0 μg/mL. The optical sensor was successfully applied for the determination of Tobramycin in ophthalmic formulations and spiked human plasma without pre-treatment. Additionally, the binding between Tobramycin and PVP- capped silver nanoparticles was studied using molecular docking software. The method was assessed and compared to colorimetric reported methods for the green character using Green Analytical Procedure Index (GAPI) and Analytical GREEnness calculator (AGREE) tools and found to be greener.

Funder

October University for Modern Sciences and Arts

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Higgins C, Kastner R. Nebramycin, a new broad-spectrum antibiotic complex. II. Description of Streptomyces tenebrarius. Antimicrob Agents Chemother. 1967;7:324–31.

2. Nori P, Cowman K, Chen V, Bartash R, Szymczak W, Madaline T, et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol. 2021;42(1):84–8.

3. Chen L, Deng C, Chen X, Zhang X, Chen B, Yu H, et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmol. 2020;98(8):e951–9.

4. Mannan A, Asif S, Usmanghani K. A novel sensitive method for quantitative determination of tobramycin by spectrophotometer using diphenylamine. RADS J Pharm Pharm Sci. 2017;5(3):37–42.

5. Mughal U, Maheshwari M, Dayo A, Ghoto M, Memon A, Mughal M. Evaluation of quality and quantity of tobramycin sulfate from different pharmaceutical dosage forms in various brands available in Pakistan. Sind Univ Res J. 2015;47(4):801–4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3