Author:
Damavandi Sedigheh,Shiri Fereshteh,Emamjomeh Abbasali,Pirhadi Somayeh,Beyzaei Hamid
Abstract
AbstractLactate dehydrogenase (LDH) is a tetramer enzyme that converts pyruvate to lactate reversibly. This enzyme becomes important because it is associated with diseases such as cancers, heart disease, liver problems, and most importantly, corona disease. As a system-based method, proteochemometrics does not require knowledge of the protein's three-dimensional structure, but rather depends on the amino acid sequence and protein descriptors. Here, we applied this methodology to model a set of LDHA and LDHB isoenzyme inhibitors. To implement the proteochemetrics method, the camb package in the R Studio Server programming environment was used. The activity of 312 compounds of LDHA and LDHB isoenzyme inhibitors from the valid Binding DB database was retrieved. The proteochemometrics method was applied to three machine learning algorithms gradient amplification model, random forest, and support vector machine as regression methods to find the best model. Through the combination of different models into an ensemble (greedy and stacking optimization), we explored the possibility of improving the performance of models. For the RF best ensemble model of inhibitors of LDHA and LDHB isoenzymes, and were 0.66 and 0.62, respectively. LDH inhibitory activation is influenced by Morgan fingerprints and topological structure descriptors.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献