Preparation of high-capacity magnetic polystyrene sulfonate sodium material based on SI-ATRP method and its adsorption property research for sulfonamide antibiotics

Author:

Liu Huachun,Gong Bolin,Zhou Yanqiang,Sun Zhian,Wang Xiaoxiao,Zhao Shanwen

Abstract

AbstractA novel polystyrene sulfonate sodium (PSS) magnetic material was prepared by surface-initiated atom transfer radical polymerization (SI-ATRP). The starting materials were brominated magnetic material as the carrier and macroinitiator, sodium styrene sulfonate (NaSS) as the monomer, and cuprous bromide/2,2′-dipyridyl as the catalyst system. The PSS material was characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, transmission electron microscope (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a vibrating sample magnetometer (VSM). The adsorption properties of the material were then investigated on sulfa antibiotics. The kinetic and thermodynamic parameters were determined in adsorption of sulfamethazine (the smallest molecular-weight sulfonamide). The adsorption amount of sulfamerazine free acid (SMR) was found to increase with the initial concentration and temperature of SMR in solution. The adsorption effect was maximized at an initial concentration of 0.6 mmol/L. The static saturation adsorption capacity of the material was 33.53 mg/g, Langmuir and Freundlich equations exhibited good fit. The thermodynamic equilibrium equation is calculated as ΔG < 0, ΔH = 38.29 kJ/mol, ΔS > 0, which proves that the adsorption process is a process of spontaneous, endothermic and entropy increase. Kinetic studies show that the quasi-second-order kinetic equation can better fit the kinetic experimental results, which is consistent with the quasi-second-order kinetic model. The experimental results of kinetic studies were well fitted to a quasi-second-order kinetic equation. High performance liquid chromatography (HPLC) of an actual milk sample treated by the PSS magnetic material confirmed the strong adsorption of SMR from milk.

Funder

National Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3