Author:
Liu Huachun,Gong Bolin,Zhou Yanqiang,Sun Zhian,Wang Xiaoxiao,Zhao Shanwen
Abstract
AbstractA novel polystyrene sulfonate sodium (PSS) magnetic material was prepared by surface-initiated atom transfer radical polymerization (SI-ATRP). The starting materials were brominated magnetic material as the carrier and macroinitiator, sodium styrene sulfonate (NaSS) as the monomer, and cuprous bromide/2,2′-dipyridyl as the catalyst system. The PSS material was characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, transmission electron microscope (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a vibrating sample magnetometer (VSM). The adsorption properties of the material were then investigated on sulfa antibiotics. The kinetic and thermodynamic parameters were determined in adsorption of sulfamethazine (the smallest molecular-weight sulfonamide). The adsorption amount of sulfamerazine free acid (SMR) was found to increase with the initial concentration and temperature of SMR in solution. The adsorption effect was maximized at an initial concentration of 0.6 mmol/L. The static saturation adsorption capacity of the material was 33.53 mg/g, Langmuir and Freundlich equations exhibited good fit. The thermodynamic equilibrium equation is calculated as ΔG < 0, ΔH = 38.29 kJ/mol, ΔS > 0, which proves that the adsorption process is a process of spontaneous, endothermic and entropy increase. Kinetic studies show that the quasi-second-order kinetic equation can better fit the kinetic experimental results, which is consistent with the quasi-second-order kinetic model. The experimental results of kinetic studies were well fitted to a quasi-second-order kinetic equation. High performance liquid chromatography (HPLC) of an actual milk sample treated by the PSS magnetic material confirmed the strong adsorption of SMR from milk.
Funder
National Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献