Biorenewable triblock copolymers consisting of l-lactide and ε-caprolactone for removing organic pollutants from water: a lifecycle neutral solution

Author:

Bernhardt Katrina T.,Collins Haley G.,Balija Amy M.ORCID

Abstract

Abstract Background Current methods of removing organic pollutants from water are becoming ineffective as the world population increases. In this study, a series of biorenewable triblock copolymers with hydrophobic poly(ε-caprolactone) block and hydrophilic poly(l-lactide) blocks were synthesized and tested as agents to remove environmental pollutants from an aqueous solution. The percent of pollutant removed and equilibrium inclusion constants were calculated for the polymers. These values were compared to previously known removal agents for their effectiveness. Results Triblock copolymer samples removed over 70% of the polycyclic aromatic hydrocarbon (PAH) phenanthrene from an aqueous solution, with selectivity for the adsorption of phenanthrene over other PAHs tested. The inclusion constant was 7.4 × 105 M−1 and adsorption capacity was 5.8 × 10−7 mol phenanthrene/g polymer. Rose Bengal was used to further probe the nature of interactions between the copolymers and a small molecule guest. Solid samples of the block-poly(l-lactide)–block-poly(ε-caprolactone)–block-poly(l-lactide) (PLLA–PCL–PLLA) systems were found to rapidly remove over 90% of Rose Bengal from aqueous solution, resulting in a complete disappearance of the characteristic pink color. Solutions of the copolymers in dichloromethane also removed Rose Bengal from water with a similar level of efficiency. Large inclusion constant values were obtained, ranging from 1.0 × 105 to 7.9 × 105 M−1, and the average adsorption capacity value of 6.2 × 10−7 mol/g polymer was determined. Aged polymer samples exhibited different adsorption characteristics and mechanistic theories for the removal of Rose Bengal were determined. Conclusion The triblock copolymer consisting of l-lactide and ε-caprolactone was effective in removing various organic pollutants in aqueous environments. It is a biorenewable material which leads to minimal waste production during its lifecycle. These polymers were in general more effective in removing organic pollutants than commercially available pollution removal systems.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3