Synthesis, antibacterial and antioxidant activities of Thiazole-based Schiff base derivatives: a combined experimental and computational study

Author:

Lemilemu Fitsum,Bitew Mamaru,Demissie Taye B.,Eswaramoorthy Rajalakshmanan,Endale Milkyas

Abstract

Abstract Background Thiazole-based Schiff base compounds display significant pharmacological potential with an ability to modulate the activity of many enzymes involved in metabolism. They also demonstrated to have antibacterial, antifungal, anti-inflammatory, antioxidant, and antiproliferative activities. In this work, conventional and green approaches using ZnO nanoparticles as catalyst were used to synthesize thiazole-based Schiff base compounds. Results Among the synthesized compounds, 11 showed good activities towards Gram-negative E. coli (14.40 ± 0.04), and Gram-positive S. aureus (15.00 ± 0.01 mm), respectively, at 200 μg/mL compared to amoxicillin (18.00 ± 0.01 mm and 17.00 ± 0.04). Compounds 7 and 9 displayed better DPPH radical scavenging potency with IC50 values of 3.6 and 3.65 μg/mL, respectively, compared to ascorbic acid (3.91 μg/mL). The binding affinity of the synthesized compounds against DNA gyrase B is within − 7.5 to − 6.0 kcal/mol, compared to amoxicillin (− 6.1 kcal/mol). The highest binding affinity was achieved for compounds 9 and 11 (− 6.9, and − 7.5 kcal/mol, respectively). Compounds 7 and 9 displayed the binding affinity values of − 5.3 to − 5.2 kcal/mol, respectively, against human peroxiredoxin 5. These values are higher than that of ascorbic acid (− 4.9 kcal/mol), in good agreement with the experimental findings. In silico cytotoxicity predictions showed that the synthesized compounds Lethal Dose (LD50) value are class three (50 ≤ LD50 ≤ 300), indicating that the compounds could be categorized under toxic class. Density functional theory calculations showed that the synthesized compounds have small band gap energies ranging from 1.795 to 2.242 eV, demonstrating that the compounds have good reactivities. Conclusions The synthesized compounds showed moderate to high antibacterial and antioxidant activities. The in vitro antibacterial activity and molecular docking analysis showed that compound 11 is a promising antibacterial therapeutics agent against E. coli, whereas compounds 7 and 9 were found to be promising antioxidant agents. Moreover, the green synthesis approach using ZnO nanoparticles as catalyst was found to be a very efficient method to synthesize biologically active compounds compared to the conventional method.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3