Author:
Zahra Samreen,Shahid Waneeza,Amin Chaudhry Athar,Zahra Sarwat,Kanwal Bushra
Abstract
AbstractBackgroundIn this work, nickel oxide nanoparticles were prepared by polyol mediated aqueous route of sol–gel process using nickel nitrate hexahydrate as precursor, a mixture of isopropyl alcohol and water as solvent and glycerol for making polyol medium followed by calcination at various temperatures ranging from 500 to 900 °C. Characterization was carried out using X–ray diffractometry, infrared spectroscopy, differential scanning calorimetry-thermogravimetry and field emission scanning electron microscopy.ResultsThe results confirmed the formation of face-cantered cubic structure of nickel oxide with its complete conversion after calcination at 900 °C; significant variation in the surface morphology was observed with the increasing calcination temperature.ConclusionsThe study revealed that the aqueous sol–gel route using polyol system followed by calcination at ambient temperatures lead to the successful synthesis of nickel oxide nanoparticles.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Hong SJ, Mun HJ, Kim BJ, Kim YS. Characterization of nickel oxide nanoparticles synthesized under low temperature. Micromachines. 2021;12:1168–77.
2. Li X, Xhang X, Li Z, Qian Y. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods. Solid State Commun. 2006;137:581–4.
3. Shajudheen VPM, Sivakumar M, Kumar SS. Synthesis and characterization of NiO nanoparticles by thermal oxidation of nickel sulfide nanoparticles. Mater Today Proc. 2016;3:2450–6.
4. Kalam A, Al-Sehemi AG, Al-Shihri AS, Du G, Ahmad T. Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties. Mater Charact. 2012;68:77–81.
5. Gebretinsae HG, Tsegay MG, Nuru ZY. Biosynthesis of nickel oxide (NiO) nanoparticles from cactus plant extract. Mater Today Proc. 2021;36(2):566–70.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献