Simultaneous analysis of two drugs used as supportive treatment for COVID-19: comparative statistical studies and analytical ecological appraisal

Author:

Ibrahim Hany,El-Abassy Omar M,Abdellatef Hisham Ezzat,Hendawy Hassan A. M.,El-Sayed Heba M

Abstract

AbstractPharmaceutical quality control products (QC) demand quick, sensitive, and cost-effective methods to ensure high production at a low cost. Green analytical methods are also becoming more common in pharmaceutical research to cut down on the amount of waste that goes into the environment. Meclizine hydrochloride (MZH) and pyridoxine hydrochloride (PYH) are reported to be excellent for calming down COVID-19. As a result, the amount of MZH and PYH manufactured by multinational pharmaceutical organizations has increased considerably during the last several months. The present work proposes three environmentally friendly, straightforward, and sensitive spectrophotometric procedures for quantification of MZH in the presence of PYH in a pure and marketable formulations. The approaches under examination include ratio subtraction (RSM), induced dual wavelength (IDW), and Fourier self-deconvolution (FSD). PYH, on the other hand, was directly quantified at 290 nm. For both drugs, the procedures follow Beer’s law in the range of (5–50 µg/mL). The RSM, IDW, and FSD methods, as well as the zero-order approach for PYH, have all been verified in accordance with ICH standards. The ecological value of established methodologies was determined using four distinct ways: the national environmental methods index (NEMI), the analytical Eco-scale, the Analytical Greenness Metric (AGREE), and the green analytical process index (GAPI). Comparing the findings to those of the previously described spectrophotometric technique, no major changes were identified.

Funder

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank

Egyptian Russian University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Reference36 articles.

1. Karlinsky A, Kobak D. Tracking excess mortality across countries during the covid-19 pandemic with the world mortality dataset. Elife. 2021;10:1–21.

2. Shahin M. Suggested study as a treatment protocol for coronavirus. J Sci Res Sci. 2020;37:60–72.

3. British Pharmacopoeia Commission. The British pharmacopoeia, vol. I. London: Her Majesty’s Stationery Office; 2017.

4. Royal Pharmaceutical Society of Great Britain. Martindale: the complete drug reference. 36th ed. London: Pharmaceutica Press; 2017.

5. Bohania N, Ish P, Nune A, Iyengar KP. Cranial neuropathy in COVID-19: a case series and review of literature. Infez Med. 2021;29:609–13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3