Continuous wavelet transform for solving the problem of minor components in quantitation of pharmaceuticals: a case study on the mixture of ibuprofen and phenylephrine with its degradation products

Author:

Hassan Said A.,Fekry Reham A.,Fayez Yasmin M.,Kelani Khadiga M.

Abstract

AbstractThe presence of minor components represents a challenging problem in spectrophotometric analysis of pharmaceuticals. If one component has a low absorptivity or present in a low concentration compared to the other components, this will hinder its quantitation by spectrophotometric methods. Continuous Wavelet Transform (CWT) as a signal processing technique was utilized to figure out a solution to such a problem. A comparative study was established between traditional derivative spectrophotometry (Numerical Differentiation, ND) and CWT to indicate the advantages and limitations of each technique and possibility of solving the problem of minor components. A mixture of ibuprofen (IBU) and phenylephrine (PHE) with its degradation products forming a ternary mixture was used for comparing the two techniques. The two techniques were applied on raw spectral data and on ratio spectra data resulting in four methods, namely ND, CWT, Derivative Ratio-Zero Crossing (DRZC) and Continuous Wavelet Transform Ratio-Zero Crossing (CWTR-ZC) methods. By comparing the results in laboratory prepared mixtures, CWT technique showed advantages in analysis of mixtures with minor components than ND. The proposed methods were validated according to the ICH guideline Q2(R1), where their linearity was established with correlation coefficient ranging from 0.9995 to 0.9999. The linearity was in the range 3–40 μg/mL for PHE in all methods, while for IBU it was 20–180 and 30–180 μg/mL in CWT and ND methods, respectively. The CWT methods were applied for quantitative determination of the drugs in their dosage form showing the ability of the methods to quantitate minor components in pharmaceutical formulations.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3