6D-QSAR for predicting biological activity of human aldose reductase inhibitors using quasar receptor surface modeling

Author:

Sokouti Babak,Hamzeh-Mivehroud Maryam

Abstract

AbstractThe application of QSAR analysis dates back a half-century ago and is currently continuously employed in any rational drug design. The multi-dimensional QSAR modeling can be a promising tool for researchers to develop reliable predictive QSAR models for designing novel compounds. In the present work, we studied inhibitors of human aldose reductase (AR) to generate multi-dimensional QSAR models using 3D- and 6D-QSAR methods. For this purpose, Pentacle and Quasar’s programs were used to produce the QSAR models using corresponding dissociation constant (Kd) values. By inspecting the performance metrics of the generated models, we achieved similar results with comparable internal validation statistics. However, considering the externally validated values, 6D-QSAR models provide significantly better prediction of endpoint values. The obtained results suggest that the higher the dimension of the QSAR model, the higher the performance of the generated model. However, more studies are required to verify these outcomes.

Funder

Tabriz University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3