Author:
Mohamed Ahmed R.,Abolmagd Ebrahim,Nour Israa M.,Badrawy Mohamed,Hasan Mohamed A.
Abstract
AbstractMolnupiravir is the first oral direct-acting antiviral prodrug recently approved for the COVID-19 pandemic. Here and for the first time, we present a novel, sensitive, robust, and simple silver-nanoparticles spectrophotometric technique for molnupiravir analysis in its capsules and dissolution media. This spectrophotometric technique involved silver-nanoparticles synthesis through a redox reaction between the reducing agent (molnupiravir) and the oxidizing agent (silver nitrate) in presence of polyvinylpyrrolidone as a stabilizing agent. The produced silver-nanoparticles have an intense surface plasmon resonance peak at 416 nm where the measured absorbance values were utilized for the quantitative analysis of molnupiravir. The produced silver-nanoparticles were recognized by using the transmission electron microscope. Under optimal conditions, a good linear rapport was accomplished between molnupiravir concentrations and the corresponding absorbance values in a range of (100–2000) ng/mL with a detection limit of 30 ng/mL. Greenness assessment was implemented using eco-scale scoring and GAPI disclosing the excellent greenness of the suggested technique. The suggested silver-nanoparticles technique was authenticated according to recommendations of the ICH and statistically assessed with the reported liquid chromatographic method without significant differences regarding accuracy or precision. Accordingly, the suggested technique is deemed a green and cheap alternative for assaying molnupiravir due to its reliance primarily on water. Furthermore, the suggested technique’s high sensitivity can be employed for investigating molnupiravir bioequivalence in future studies.
Graphical Abstract
Funder
Egyptian Russian University
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献