Earth-friendly-assessed silver-nanoparticles spectrophotometric method for rapid and sensitive analysis of Molnupiravir, an FDA-approved candidate for COVID-19: application on pharmaceutical formulation and dissolution test

Author:

Mohamed Ahmed R.,Abolmagd Ebrahim,Nour Israa M.,Badrawy Mohamed,Hasan Mohamed A.

Abstract

AbstractMolnupiravir is the first oral direct-acting antiviral prodrug recently approved for the COVID-19 pandemic. Here and for the first time, we present a novel, sensitive, robust, and simple silver-nanoparticles spectrophotometric technique for molnupiravir analysis in its capsules and dissolution media. This spectrophotometric technique involved silver-nanoparticles synthesis through a redox reaction between the reducing agent (molnupiravir) and the oxidizing agent (silver nitrate) in presence of polyvinylpyrrolidone as a stabilizing agent. The produced silver-nanoparticles have an intense surface plasmon resonance peak at 416 nm where the measured absorbance values were utilized for the quantitative analysis of molnupiravir. The produced silver-nanoparticles were recognized by using the transmission electron microscope. Under optimal conditions, a good linear rapport was accomplished between molnupiravir concentrations and the corresponding absorbance values in a range of (100–2000) ng/mL with a detection limit of 30 ng/mL. Greenness assessment was implemented using eco-scale scoring and GAPI disclosing the excellent greenness of the suggested technique. The suggested silver-nanoparticles technique was authenticated according to recommendations of the ICH and statistically assessed with the reported liquid chromatographic method without significant differences regarding accuracy or precision. Accordingly, the suggested technique is deemed a green and cheap alternative for assaying molnupiravir due to its reliance primarily on water. Furthermore, the suggested technique’s high sensitivity can be employed for investigating molnupiravir bioequivalence in future studies. Graphical Abstract

Funder

Egyptian Russian University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3