A novel spectrophotometric approach relies on a charge transfer complex between atomoxetine with quinone-based π-acceptor. Application to content uniformity test

Author:

Abu-hassan Ahmed A.

Abstract

AbstractAtomoxetine (ATO) belongs to psychoanaleptic drugs and is utilized in attention-deficit hyperactivity syndrome treatment. In this study, two facile and selective approaches are implemented for the spectrophotometric analysis of atomoxetine. The two approaches rely on charge transfer formed between ATO base (n-donor) with p-chloranil and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ; π-acceptor). The generated complexes exhibit absorption intensity maxima at 550 and 460 nm in acetonitrile for p-chloranil and DDQ in the order. Under the optimum reaction condition, Beer’s law was followed for p-chloranil and DDQ at concentrations of 30–320 and 10–80 µg mL− 1, respectively. The ICH guidelines were followed for work validation, and the outcomes were excellent and satisfactory. The assessment of ATO in pharmaceutical capsules using the suggested procedures was successful, and the results were contrasted with those obtained using a different published method to show accuracy and precision. Additionally, the two methods were used to assess the homogeneity of ATO content in the commercialized capsule.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Reference21 articles.

1. Dogrukol-Ak D, Yeniceli D. A simple and specific HPLC method for the determination of atomoxetine in pharmaceuticals and human plasma. J Liq Chromatogr Relat Technol. 2010;33(19):1745–59.

2. Soliman S, El-Agizy H, Bayoumi AE. Validated stability–indicating UPLC and derivative synchronous fluorescence spectroscopy methods for the determination of atomoxetine hydrochloride in pharmaceutical preparation. Pharm Anal Acta. 2014;5:278.

3. Raghubabu K, Swarup LS, Ramu BK, Narayanarao M, Ramdas C. ASSAY of atomoxetine hydrochloride in bulk and its solid dosage forms by visible spectrophotometry using two aromatic aldehydes. Rasayan J Chem. 2011;4:784–9.

4. Raghubabu K, Swarup LS, Ramu BK, Rao M, Ramdas C. Simple and convenient visible spectrophotometric assay of atomoxetine hydrochloride in bulk drug and pharmaceutical preparations. Int J Chem Sci. 2012;10(2):643–54.

5. Ishaq BM, Ahad HA, Muneer S, Praveena S. Colourimetric assay of atomoxetine hydrochloride by simple aurum coupling reaction in bulk and tablet dosage form. Glob J Med Res. 2014;13:70–4.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3