Author:
Cadena-Cruz José Eduardo,Guamán-Ortiz Luis M.,Romero-Benavides Juan Carlos,Bailon-Moscoso Natalia,Murillo-Sotomayor Kevin E.,Ortiz-Guamán Nadia V.,Heredia-Moya Jorge
Abstract
Abstract
Background
Pyrazoles have attracted particular attention due to the diverse biological activities associated with this heterocyclic system, and some have been shown to be cytotoxic to several human cell lines. Several drugs currently on the market have this heterocycle as the key structural motif, and some have been approved for the treatment of different types of cancer.
Results
4,4ʹ-(Arylmethylene)bis(1H-pyrazol-5-ols) derivatives 3a–q were synthetized by a three components reaction of 3-methyl-1-phenyl-5-pyrazolone (1) with various benzaldehydes 2 catalyzed by sodium acetate at room temperature. The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR) and were evaluated for their radical scavenging activity by DPPH assay and tested in vitro on colorectal RKO carcinoma cells in order to determine their cytotoxic properties. All 4,4ʹ-(arylmethylene)bis(1H-pyrazol-5-ols) derivatives 3a–q were synthetized in high to excellent yield, and pure products were isolated by simple filtration. All compounds have good radical scavenging activity, and half of them are more active than ascorbic acid used as standard.
Conclusion
Several derivatives proved to be cytotoxic in the RKO cell line. In particular, compound 3i proved to be a very potent scavenger with an IC50 of 6.2 ± 0.6 µM and exhibited an IC50 of 9.9 ± 1.1 μM against RKO cell. Autophagy proteins were activated as a survival mechanism, whereas the predominant pathway of death was p53-mediated apoptosis.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd 48:7–10. https://doi.org/10.1007/s10593-012-0960-z
2. Pandey A, Dewangan D, Verma S et al (2011) Synthesis of Schiff bases of 2-amino-5-aryl-1, 3, 4-thiadiazole And its Analgesic, Anti- Inflammatory, Anti-Bacterial and Anti- Tubercular Activity. Int J ChemTech Res 3:178–184
3. Halim KNM, Ramadan SK, Rizk SA, El-Hashash MA (2020) Synthesis, DFT study, molecular docking and insecticidal evaluation of some pyrazole-based tetrahydropyrimidine derivatives. Synth Commun 50:1159–1175. https://doi.org/10.1080/00397911.2020.1720739
4. Naim MJ, Alam O, Nawaz F et al (2016) Current status of pyrazole and its biological activities. J Pharm Bioallied Sci 8:2–17. https://doi.org/10.4103/0975-7406.171694
5. Mohamed MS, Abdelhamid AO, Almutairi FM et al (2018) Induction of apoptosis by pyrazolo[3,4-d]pyridazine derivative in lung cancer cells via disruption of Bcl-2/Bax expression balance. Bioorg Med Chem 26:623–629. https://doi.org/10.1016/j.bmc.2017.12.026
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献