Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model

Author:

Gao Rui,Liu Yanxia,Gjesing Anette Prior,Hollensted Mette,Wan Xianzi,He Shuwen,Pedersen Oluf,Yi Xin,Wang Jun,Hansen Torben

Abstract

Abstract Background Monogenic diabetes is a genetic disease often caused by mutations in genes involved in beta-cell function. Correct sub-categorization of the disease is a prerequisite for appropriate treatment and genetic counseling. Target-region capture sequencing is a combination of genomic region enrichment and next generation sequencing which might be used as an efficient way to diagnose various genetic disorders. We aimed to develop a target-region capture sequencing platform to screen 117 selected candidate genes involved in metabolism for mutations and to evaluate its performance using monogenic diabetes as a study-model. Results The performance of the assay was evaluated in 70 patients carrying known disease causing mutations previously identified in HNF4A, GCK, HNF1A, HNF1B, INS, or KCNJ11. Target regions with a less than 20-fold sequencing depth were either introns or UTRs. When only considering translated regions, the coverage was 100% with a 50-fold minimum depth. Among the 70 analyzed samples, 63 small size single nucleotide polymorphisms and indels as well as 7 large deletions and duplications were identified as being the pathogenic variants. The mutations identified by the present technique were identical with those previously identified through Sanger sequencing and Multiplex Ligation-dependent Probe Amplification. Conclusions We hereby demonstrated that the established platform as an accurate and high-throughput gene testing method which might be useful in the clinical diagnosis of monogenic diabetes.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Reference28 articles.

1. Murphy R, Ellard S, Hattersley AT: Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 2008, 4 (4): 200-213. 10.1038/ncpendmet0778.

2. Fajans SS, Bell GI, Polonsky KS: Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001, 345 (13): 971-980. 10.1056/NEJMra002168.

3. Flannick J, Beer NL, Bick AG, Agarwala V, Molnes J, Gupta N, Burtt NP, Florez JC, Meigs JB, Taylor H, Lyssenko V, Irgens H, Fox E, Burslem F, Johansson S, Brosnan MJ, Trimmer JK, Newton-Cheh C, Tuomi T, Molven A, Wilson JG, O'Donnell CJ, Kathiresan S, Hirschhorn JN, Njølstad PR, Rolph T, Seidman JG, Gabriel S, Cox DR, Seidman CE, et al: Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nature Genetics. 2013, 45 (11): 1380-1385. 10.1038/ng.2794.

4. Bowman P, Flanagan SE, Edghill EL, Damhuis A, Shepherd MH, Paisey R, Hattersley AT, Ellard S: Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia. 2012, 55 (1): 123-127. 10.1007/s00125-011-2319-x.

5. Bonnefond A, Philippe J, Durand E, Dechaume A, Huyvaert M, Montagne L, Marre M, Balkau B, Fajardy I, Vambergue A, Vatin V, Delplanque J, Le Guilcher D, De Graeve F, Lecoeur C, Sand O, Vaxillaire M, Froguel P: Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One. 2012, 7 (6): e37423-10.1371/journal.pone.0037423.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3