Author:
Xing Chao,Schumacher Fredrick R,Xing Guan,Lu Qing,Wang Tao,Elston Robert C
Abstract
Abstract
There is growing evidence that a map of dense single-nucleotide polymorphisms (SNPs) can outperform a map of sparse microsatellites for linkage analysis. There is also argument as to whether a clustered SNP map can outperform an evenly spaced SNP map. Using Genetic Analysis Workshop 14 simulated data, we compared for linkage analysis microsatellites, SNPs, and composite markers derived from SNPs. We encoded the composite markers in a two-step approach, in which the maximum identity length contrast method was employed to allow for recombination between loci. A SNP map 2.3 times as dense as a microsatellite map (~2.9 cM compared to ~6.7 cM apart) provided slightly less information content (~0.83 compared to ~0.89). Most inheritance information could be extracted when the SNPs were spaced < 1 cM apart. Comparing the linkage results on using SNPs or composite markers derived from them based on both 3 cM and 0.3 cM resolution maps, we showed that the inter-SNP distance should be kept small (< 1 cM), and that for multipoint linkage analysis the original markers and the derived composite markers had similar power; but for single point linkage analysis the resulting composite markers lead to more power. Considering all factors, such as information content, flexibility of analysis method, map errors, and genotyping errors, a map of clustered SNPs can be an efficient design for a genome-wide linkage scan.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献