Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system
-
Published:2012-04-03
Issue:1
Volume:13
Page:
-
ISSN:1471-2156
-
Container-title:BMC Genetics
-
language:en
-
Short-container-title:BMC Genet
Author:
Curtis Ross E,Goyal Anuj,Xing Eric P
Abstract
Abstract
Background
Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the difficulty required to use these cutting-edge techniques, geneticists often revert to simpler, less powerful methods.
Results
To make structured association mapping more accessible to geneticists, we have developed an automatic processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured association mapping algorithms.
Conclusions
Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference30 articles.
1. Schadt EE: Molecular networks as sensors and drivers of common human diseases. Nature. 2009, 461: 218-223. 10.1038/nature08454. 2. Gilad Y, Rifkin SA, Pritchard JK: Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 2008, 24 (8): 408-45. 10.1016/j.tig.2008.06.001. 3. Simpson MA, Irving MD, Asilmax E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC: Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011, 43: 303-305. 10.1038/ng.779. 4. Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang D, Xiong X, Liao YH, Zeng QT, Yang YZ, Cheng X, Yang R, Wang CC, Wu G, Lu QL, Bai Y, Huang YF, Yin D, Yang Q, Wang XJ, Dai DP, Zhang RF, Wan J, Ren JH, Li SS, Zhao YY, Fu FF, Huang Y, Li QX, Shi SW, et al: Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet. 2011, 43: 345-349. 10.1038/ng.783. 5. Manolio RA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler E, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM: Finding the missing heritability of complex disease. Nature. 2009, 461: 747-753. 10.1038/nature08494.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|