Author:
Farber Charles R,Chitwood James,Lee Sang-Nam,Verdugo Ricardo A,Islas-Trejo Alma,Rincon Gonzalo,Lindberg Iris,Medrano Juan F
Abstract
Abstract
Background
The identification of novel genes is critical to understanding the molecular basis of body weight. Towards this goal, we have identified secretogranin V (Scg5; also referred to as Sgne1), as a candidate gene for growth traits.
Results
Through a combination of DNA microarray analysis and quantitative PCR we identified a strong expression quantitative trait locus (eQTL) regulating Scg5 expression in two mouse chromosome 2 congenic strains and three additional F2 intercrosses. More importantly, the eQTL was coincident with a body weight QTL in congenic mice and Scg5 expression was negatively correlated with body weight in two of the F2 intercrosses. Analysis of haplotype blocks and genomic sequencing of Scg5 in high (C3H/HeJ, DBA/2J, BALB/cByJ, CAST/EiJ) and low (C57BL/6J) expressing strains revealed mutations unique to C57BL/6J and possibly responsible for the difference in mRNA abundance. To evaluate the functional consequence of Scg5 overexpression we measured the pituitary levels of 7B2 protein and PCSK2 activity and found both to be increased. In spite of this increase, the level of pituitary α-MSH, a PCSK2 processing product, was unaltered.
Conclusion
Together, these data support a role for Scg5 in the modulation of body weight.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference42 articles.
1. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Perusse L, Bouchard C: The human obesity gene map: the 2005 update. Obesity (Silver Spring, Md). 2006, 14 (4): 529-644.
2. Chiu S, Fisler JS, Warden CH: Genetic Analysis of Rodent Obesity and Diabetes. The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models. Edited by: Fox J, Barthold S, Newcomer C, Smith A, Quimby F, Davisson M. 2006, Elsevier, 3: 816-
3. Wuschke S, Dahm S, Schmidt C, Joost HG, Al-Hasani H: A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice. International journal of obesity (2005). 2007, 31 (5): 829-841.
4. Farber CR, Corva PM, Medrano JF: Genome-wide isolation of growth and obesity QTL using mouse speed congenic strains. BMC genomics [electronic resource]. 2006, 7: 102-10.1186/1471-2164-7-102.
5. Farber CR, Medrano JF: Fine mapping reveals sex bias in quantitative trait loci affecting growth, skeletal size and obesity-related traits on mouse chromosomes 2 and 11. Genetics. 2007, 175 (1): 349-360. 10.1534/genetics.106.063693.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献