Boosting alternating decision trees modeling of disease trait information

Author:

Liu Kuang-Yu,Lin Jennifer,Zhou Xiaobo,Wong Stephen TC

Abstract

Abstract We applied the alternating decision trees (ADTrees) method to the last 3 replicates from the Aipotu, Danacca, Karangar, and NYC populations in the Problem 2 simulated Genetic Analysis Workshop dataset. Using information from the 12 binary phenotypes and sex as input and Kofendrerd Personality Disorder disease status as the outcome of ADTrees-based classifiers, we obtained a new quantitative trait based on average prediction scores, which was then used for genome-wide quantitative trait linkage (QTL) analysis. ADTrees are machine learning methods that combine boosting and decision trees algorithms to generate smaller and easier-to-interpret classification rules. In this application, we compared four modeling strategies from the combinations of two boosting iterations (log or exponential loss functions) coupled with two choices of tree generation types (a full alternating decision tree or a classic boosting decision tree). These four different strategies were applied to the founders in each population to construct four classifiers, which were then applied to each study participant. To compute average prediction score for each subject with a specific trait profile, such a process was repeated with 10 runs of 10-fold cross validation, and standardized prediction scores obtained from the 10 runs were averaged and used in subsequent expectation-maximization Haseman-Elston QTL analyses (implemented in GENEHUNTER) with the approximate 900 SNPs in Hardy-Weinberg equilibrium provided for each population. Our QTL analyses on the basis of four models (a full alternating decision tree and a classic boosting decision tree paired with either log or exponential loss function) detected evidence for linkage (Z ≥ 1.96, p < 0.01) on chromosomes 1, 3, 5, and 9. Moreover, using average iteration and abundance scores for the 12 phenotypes and sex as their relevancy measurements, we found all relevant phenotypes for all four populations except phenotype b for the Karangar population, with suggested subgroup structure consistent with latent traits used in the model. In conclusion, our findings suggest that the ADTrees method may offer a more accurate representation of the disease status that allows for better detection of linkage evidence.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Reference8 articles.

1. Freund Y, Mason L: The alternating decision tree learning algorithm. The Proceedings of the Sixteenth International Conference on Machine Learning8. 1999, San Francisco: Morgan Kaufmann Publishers, Inc, 124-133.

2. Breiman L: Bias, variance, and arcing classifiers. 1996, Technical report 460, Statistics Department, University of California at Berkeley

3. Quinlan J: Bagging, boosting, and C4.5. The Proceedings of the Thirteenth National Conference on Artificial Intelligence. 1996, Menlo Park, CA: AAAI Press, 725-730.

4. Freund Y, Schapire RE: A decision-theoretic generalization of on-line learning and an application to boosting. J Comput System Sci. 1997, 55: 119-139.

5. Schapire R, Singer Y: Improved boosting algorithms using confidence-rated predictions. The Proceedings of the Eleventh Annual Conference on Computational Learning Theory. 1998, New York: ACM Press, 80-91.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3