Author:
Prasad Pushplata,Kumar KM Prasanna,Ammini AC,Gupta Arvind,Gupta Rajeev,Thelma BK
Abstract
Abstract
Background
Genetic markers conferring susceptibility to diabetes specific renal disease remains to be identified for early prediction and development of effective drugs and therapies. Inconsistent results obtained from analysis of genes from classical pathways generate need for examination of unconventional genetic markers having role in regulation of renal function. Experimental and clinical evidences suggest that dopamine is an important natriuretic hormone. Therefore, various genes involved in regulation of dopamine bioavailability could play a role in diabetic chronic renal insufficiency (CRI). We investigated the contribution of 12 polymorphisms from five Dopaminergic pathway genes to CRI among type-2 diabetic Asian Indian subjects.
Methods
Genetic association of 12 polymorphisms (SNPs) from five genes namely-dopamine receptor-1 (DRD1), DRD2, DRD3, DRD4, andcatechol-O-methyltransferase (COMT) with diabetic CRI was investigated using a case-control approach. Logistic regression analysis was carried out to correlate various clinical parameters with genotypes, and to study pair wise interactions between SNPs of different genes.
Results
SNPs -141 ins/del C and G>A (1 kb upstream from exon 2) in DRD2 gene showed significant allelic and genotypic association. Allele -141 insC and genotype -141 insC/insC of -141 ins/del C polymorphism, and allele A of G>A SNP were found to be predisposing to CRI. Our result of allelic and genotypic association of -141 insC/delC SNP was also reflected in the haplotypic association. Heterozygous genotype of polymorphism 900 ins/del C in COMT gene was predisposing towards CRI.
Conclusion
Some polymorphisms in DRD2 and COMT genes are significantly associated with susceptibility to CRI in the Asian Indian population which, if confirmed would be consistent with a suggested role of dopamine metabolism in disease occurrence.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference40 articles.
1. Zeng C, Asico LD, Wang X, Hopfer U, Eisner GM, Felder RA, Jose PA: Angiotensin II regulation of AT1 and D3 dopamine receptors in renal proximal tubule cells of SHR. Hypertension. 2003, 41: 724-729. 10.1161/01.HYP.0000047880.78462.0E.
2. Sato M, Soma M, Nakayama T, Kanmastsuse K: Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension. 2000, 36: 183-186.
3. Zeng C, Luo Y, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA: Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats. Hypertension. 2003, 42: 787-792. 10.1161/01.HYP.0000085334.34963.4E.
4. Soma M, Nakayama K, Rahmutula D, Uwabo J, Sato M, Kunimoto M, Aoi N, Kosuge K, Kanmatsuse K: Ser9Gly polymorphism in the dopamine D3 receptor gene is not associated with essential hypertension in the Japanese. Med Sci Monit. 2002, 8: 1-4.
5. Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, Pocchiari F, Felder RA, Eisner GM, Jose PA: Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest. 1998, 102 (3): 493-8. 10.1172/JCI3685.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献