Analysis of genome-wide association study data using the protein knowledge base
-
Published:2011-11-13
Issue:1
Volume:12
Page:
-
ISSN:1471-2156
-
Container-title:BMC Genetics
-
language:en
-
Short-container-title:BMC Genet
Author:
Ballouz Sara,Liu Jason Y,Oti Martin,Gaeta Bruno,Fatkin Diane,Bahlo Melanie,Wouters Merridee A
Abstract
Abstract
Background
Genome-wide association studies (GWAS) aim to identify causal variants and genes for complex disease by independently testing a large number of SNP markers for disease association. Although genes have been implicated in these studies, few utilise the multiple-hit model of complex disease to identify causal candidates. A major benefit of multi-locus comparison is that it compensates for some shortcomings of current statistical analyses that test the frequency of each SNP in isolation for the phenotype population versus control.
Results
Here we developed and benchmarked several protocols for GWAS data analysis using different in-silico gene prediction and prioritisation methodologies. We adopted a high sensitivity approach to the data, using less conservative statistical SNP associations. Multiple gene search spaces, either of fixed-widths or proximity-based, were generated around each SNP marker. We used the candidate disease gene prediction system Gentrepid to identify candidates based on shared biomolecular pathways or domain-based protein homology. Predictions were made either with phenotype-specific known disease genes as input; or without a priori knowledge, by exhaustive comparison of genes in distinct loci. Because Gentrepid uses biomolecular data to find interactions and common features between genes in distinct loci of the search spaces, it takes advantage of the multi-locus aspect of the data.
Conclusions
Results suggest testing multiple SNP-to-gene search spaces compensates for differences in phenotypes, populations and SNP platforms. Surprisingly, domain-based homology information was more informative when benchmarked against gene candidates reported by GWA studies compared to previously determined disease genes, possibly suggesting a larger contribution of gene homologs to complex diseases than Mendelian diseases.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference50 articles.
1. Murcray CE, Lewinger JP, Gauderman WJ: Gene-environment interaction in genome-wide association studies. Am J Epidemiol. 2009, 169 (2): 219-226. 2. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science. 1996, 273 (5281): 1516-1517. 10.1126/science.273.5281.1516. 3. Wang K, Li M, Bucan M: Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet. 2007, 81 (6): 1278-1283. 10.1086/522374. 4. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JRB, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney ASF, The Wellcome Trust Case Control C, McCarthy MI, Hattersley AT: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007, 316 (5829): 1336-1341. 10.1126/science.1142364. 5. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding C-J, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li X-Y, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007, 316 (5829): 1341-1345. 10.1126/science.1142382.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|