Author:
Yan Ting,Hou Bo,Yang Yaning
Abstract
Abstract
Background
Genomic control (GC) method is a useful tool to correct for the cryptic relatedness in population-based association studies. It was originally proposed for correcting for the variance inflation of Cochran-Armitage's additive trend test by using information from unlinked null markers, and was later generalized to be applicable to other tests with the additional requirement that the null markers are matched with the candidate marker in allele frequencies. However, matching allele frequencies limits the number of available null markers and thus limits the applicability of the GC method. On the other hand, errors in genotype/allele frequencies may cause further bias and variance inflation and thereby aggravate the effect of GC correction.
Results
In this paper, we propose a regression-based GC method using null markers that are not necessarily matched in allele frequencies with the candidate marker. Variation of allele frequencies of the null markers is adjusted by a regression method.
Conclusion
The proposed method can be readily applied to the Cochran-Armitage's trend tests other than the additive trend test, the Pearson's chi-square test and other robust efficiency tests. Simulation results show that the proposed method is effective in controlling type I error in the presence of population substructure.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference15 articles.
1. Spielman R, McGinnis R, Ewens W: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993, 52: 506-516.
2. Curtis D: Use of siblings as controls in case-control association studies. Ann Hum Genet. 1997, 61: 319-333. 10.1017/S000348009700626X.
3. Gauderman W, Witte J, Thomas D: Family-based association studies. J Natl Cancer Inst Monogr. 1999, 26: 31-37.
4. Li Z, Gail M, Pee D, Gastwirth J: Statistical properties of Teng and Risch's sibship type tests for detecting an association between disease and a candidate allele. Hum Hered. 2002, 53: 114-129. 10.1159/000064974.
5. Li Z, Gastwirth J, Gail M: Power and related statistical properties of conditional likelihood score tests for association studies in nuclear families with parental genotypes. Ann Hum Genet. 2005, 69: 296-314. 10.1046/J.1469-1809.2005.00169.x.