Author:
Eversley Chevonne D,Clark Tavia,Xie Yuying,Steigerwalt Jill,Bell Timothy A,de Villena Fernando PM,Threadgill David W
Abstract
Abstract
Background
Transmission ratio distortion (TRD), defined as statistically significant deviation from expected 1:1 Mendelian ratios of allele inheritance, results in a reduction of the expected progeny of a given genotype. Since TRD is a common occurrence within interspecific crosses, a mouse interspecific backcross was used to genetically map regions showing TRD, and a developmental analysis was performed to identify the timing of allele loss.
Results
Three independent events of statistically significant deviation from the expected 50:50 Mendelian inheritance ratios were observed in an interspecific backcross between the Mus musculus A/J and the Mus spretus SPRET/EiJ inbred strains. At weaning M. musculus alleles are preferentially inherited on Chromosome (Chr) 7, while M. spretus alleles are preferentially inherited on Chrs 10 and 11. Furthermore, alleles on Chr 3 modify the TRD on Chr 11. All TRD loci detected at weaning were present in Mendelian ratios at mid-gestation and at birth.
Conclusions
Given that Mendelian ratios of inheritance are observed for Chr 7, 10 and 11 during development and at birth, the underlying causes for the interspecific TRD events are the differential post-natal survival of pups with specific genotypes. These results are consistent with the TRD mechanism being deviation from Mendelian inheritance rather than meiotic drive or segregation distortion.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference40 articles.
1. Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F: On the subspecific origin of the laboratory mouse. Nat Genet. 2007, 39: 1100-1107. 10.1038/ng2087.
2. Guenet JL, Simon-Chazottes D, Avner PR: The use of interspecific mouse crosses for gene localization: present status and future perspectives. Curr Top Microbiol Immunol. 1988, 137: 13-17.
3. Biddle FG: Segregation distortion of X-linked marker genes in interspecific crosses between Mus musculus and M. spretus. Genome. 1987, 29: 389-392.
4. Guenet JL: The contribution of wild derived mouse inbred strains to gene mapping methodology. Curr Top Microbiol Immunol. 1986, 127: 109-113.
5. Guenet JL, Bonhomme F: Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet. 2003, 19: 24-31. 10.1016/S0168-9525(02)00007-0.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献