Nanopattern surface improves cultured human myotube maturation

Author:

Brunetti Jessica,Koenig Stéphane,Monnier Arthur,Frieden MaudORCID

Abstract

Abstract Background In vitro maturation of human primary myoblasts using 2D culture remains a challenging process and leads to immature fibers with poor internal organization and function. This would however represent a valuable system to study muscle physiology or pathophysiology from patient myoblasts, at a single-cell level. Methods Human primary myoblasts were cultured on 800-nm wide striated surface between two layers of Matrigel, and in a media supplemented with an inhibitor of TGFβ receptor. Gene expression, immunofluorescence, and Ca2+ measurements upon electrical stimulations were performed at various time points during maturation to assess the organization and function of the myotubes. Results We show that after 10 days in culture, myotubes display numerous functional acetylcholine receptor clusters and express the adult isoforms of myosin heavy chain and dihydropyridine receptor. In addition, the myotubes are internally well organized with striations of α-actinin and STIM1, and occasionally ryanodine receptor 1. We also demonstrate that the myotubes present robust Ca2+ responses to repetitive electrical stimulations. Conclusion The present method describes a fast and efficient system to obtain well matured and functional myotubes in 2D culture allowing thorough analysis of single-cell Ca2+ signals.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Foundation Marcel Levaillant

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3