Genetic engineering of novel yellow color african violet (Saintpaulia ionantha) produced by accumulation of Aureusidin 6-O-glucoside

Author:

Rajabi Amir,Fahmideh LeilaORCID,Keykhasaber Mojtaba,Omran Valiollah Ghasemi

Abstract

Abstract Background Flower color is one of the main characteristics of ornamental plants. Aurones are light yellow flavonoids produced in the petals of a limited number of plant species including snapdragon (Antirrhinum majus). As a commercially-recognized species, African violet can be found in various colors except yellow. This research, aiming at changing the petals’ color of African violet from white to yellow, was conducted using the simultaneous expressions of chalcone 4’-O-glucosyltransferase (4’CGT) and aureusidin synthase (AS1) genes without the need for silencing anthocyanin biosynthesis pathway genes via both transient and stable transfer methods. Results The transient gene transfer among transgenic plants led to a clear change of petals’ color from white to light yellow. This occurs while no change was observed in non-transgenic (Wild type) petals. In total, 15 positive transgenic plants, produced via stable gene transfer, were detected. Moreover, since their flower color was yellow, both genes were present. Meanwhile, the corresponding transformation yield was determined 20-30%. The transformation, expression and integration of genes among T0 transgenic plants were verified using the PCR, qRT-PCR and Southern blotting techniques, respectively. Furthermore, the probable color change of petals’ cross-section and existence of Aureusidin 6-O-glucoside (AOG) compound were determined using a light microscope and HPLC-DAD-MSn analysis, correspondingly. Conclusions Generally, the creation of aurones biosynthesis pathway is only viable through the simultaneous expression of genes which leads to color change of African violet’s petal from white to yellow. This conclusion can lead to an effective strategy to produce yellow color in ornamental plant species.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimisation of Agrobacterium -mediated transformation in Saintpaulia ionantha H. Wendl using response surface methodology (RSM);New Zealand Journal of Crop and Horticultural Science;2024-09-08

2. RNAi: A Potent Biotechnological Tool for Improvement of Ornamental Crops;Plant Molecular Biology Reporter;2024-07-27

3. Flower color modification in Torenia fournieri by genetic engineering of betacyanin pigments;BMC Plant Biology;2024-06-27

4. Transgenic Approaches for Accelerating Breeding of Ornamental Crops;Ornamental Horticulture: Latest Cultivation Practices and Breeding Technologies;2024

5. Genome Editing in Ornamental Crops: Progress and Challenges;Ornamental Horticulture: Latest Cultivation Practices and Breeding Technologies;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3