BPTF in bone marrow provides a potential progression biomarker regulated by TFAP4 through the PI3K/AKT pathway in neuroblastoma

Author:

Jiang Chiyi,Yang Yeran,He Sidou,Yue Zhixia,Xing Tianyu,Chu Ping,Yang Wenfa,Chen Hui,Zhao Xiaoxi,Yu Yongbo,Zhang Xuan,Su Yan,Guo Yongli,Ma Xiaoli

Abstract

Abstract Background Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children, which is highly prone to bone marrow (BM) metastasis. BM can monitor early signs of mild disease and metastasis. Existing biomarkers are insufficient for the diagnosis and treatment of NB. Bromodomain PHD finger transcription factor (BPTF) is an important subunit of the chromatin-remodeling complex that is closely associated with tumors. Here, we evaluated whether BPTF in BM plays an important role in predicting NB progression, and explore the molecular mechanism of BPTF in NB. Methods The clinical relevance of the BPTF was predicted in the GEO (GSE62564) and TARGET database. The biological function of BPTF in NB was investigated by constructing cell lines and employing BPTF inhibitor AU1. Western blot was used to determine the changes of BPTF, TFAP4, PI3K/AKT signaling and Epithelial-mesenchymal transition (EMT) related markers. A total of 109 children with newly diagnosed NB in Beijing Children's Hospital from January 2018 to March 2021 were included in this study. RT-PCR was used to measure the BPTF and TFAP4 expression in BM. The cut-off level was set at the median value of BPTF expression levels. Results Databases suggested that BPTF expression was higher in NB and was significantly associated with stage and grade. Proliferation and migration of NB cells were slowed down when BPTF was silenced. Mechanistically, TFAP4 could positively regulate BPTF and promotes EMT process through activating the PI3K/AKT signaling pathway. Moreover, detection of the newly diagnosed BM specimens showed that BPTF expression was significantly higher in high-risk group, stage IV group and BM metastasis group. Children with high BPTF at initial diagnosis were considered to have high risk for disease progression and recurrence. BPTF is an independent risk factor for predicting NB progression. Conclusions A novel and convenient BPTF-targeted humoral detection that can prompt minimal residual and predict NB progression in the early stages of the disease were identified. BPTF inhibitor AU1 is expected to become a new targeted drug for NB therapy. It’s also reveal previously unknown mechanisms of BPTF in NB cell proliferation and metastasis through TFAP4 and PI3K/AKT pathways.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3