Abstract
Abstract
Background
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. COVID-19 patients may also suffer from serious symptoms including shortness of breathing, chest pressure and pain, as well as loss of daily routine habits, pointing out to a sever reduction in the quality of life. COVID-19 has afftected almost all countries, however, the United States contains the highest number of infection (> 1,595,000 cases) and deaths cases (> 95,000 deaths) in the world until May 21, 2020. Finding an influential treatment strategy against COVID-19 can be facilitated through better understanding of the virus pathogenesis and consequently interrupting the biochemical pathways that the virus may play role in human body as the current reservoir of the virus.
Results
In this study, we combined system biology and bioinformatic approaches to define the role of coexpression of angiotensin-converting enzyme 2 (ACE2), neprilysin or membrane metallo-endopeptidase (MME), and carbonic anhydrases (CAs) and their association in the pathogenesis of SARS-CoV-2. The results revealed that ACE2 as the cellular attachment site of SARS-CoV-2, neprilysin, and CAs have a great contribution together in the renin angiotensin system (RAS) and consequently in pathogenesis of SARS-CoV-2 in the vital organs such as respiratory, renal, and blood circulation systems. Any disorder in neprilysin, ACE2, and CAs can lead to increase of CO2 concentration in blood and respiratory acidosis, induction of pulmonary edema and heart and renal failures.
Conclusions
Due to the presence of ACE2-Neprilysin-CA complex in most of vital organs and as a receptor of COVID-19, it is expected that most organs are affected by SARS-CoV-2 such as inflammation and fibrosis of lungs, which may conversely affect their vital functions, temporary or permanently, sometimes leading to death. Therefore, ACE2-Neprilysin-CA complex could be the key factor of pathogenesis of SARS-CoV-2 and may provide us useful information to find better provocative and therapeutic strategies against COVID-19.
Funder
National Institute for Genetic Engineering and Biotechnology
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Reference70 articles.
1. Mahase E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ. 2020;368:m1036.
2. Zolfaghari Emameh R, Nosrati H, Taheri RA. Combination of biodata mining and computational modelling in identification and characterization of ORF1ab polyprotein of SARS-CoV-2 isolated from Oronasopharynx of an Iranian patient. Biol Proced Online. 2020;22:8.
3. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of Remdesivir for patients with severe Covid-19. N Engl J Med. 2020;NEJMoa2007016.
4. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4.
5. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473–5.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献