“Seeing inside out”: revealing the effectiveness of otoscopy training in virtual reality enhanced practical exams - a randomized controlled trial

Author:

Albrecht TobiasORCID,Fehre Nathalie,Ramackers Wolf,Nikendei Christoph,Offergeld Christian

Abstract

Abstract Background The study aimed to assess the impact of different training modalities on otoscopy performance during a practical exam using a high-fidelity simulator and to determine if objective evaluation of otoscopy is feasible using a simulator that records insertion depth and tympanic membrane coverage. Methods Participants were assigned to one of four groups: control and three intervention groups with varying training approaches. Participants received otoscopy training and then were assessed through a practical exam on a high-fidelity simulator that uses virtual reality to visualize the ear canal and middle ear. Performance was evaluated using a modified Objective Structured Assessment of Technical Skills checklist and Integrated Procedural Performance Instrument checklist. Insertion depth, tympanic membrane coverage, and correct diagnosis were recorded. Data were tested for normal distribution using the Shapiro-Wilk test. One-way ANOVA and, for non-normally distributed data, Kruskal-Wallis test combined with Dunn’s test for multiple comparisons were used. Interrater reliability was assessed using Cohen’s κ and Intraclass correlation coefficient. Results All groups rated their training sessions positively. Performance on the OSATS checklist was similar among groups. IPPI scores indicated comparable patient handling skills. The feedback group examined larger tympanic membrane areas and had higher rates of correct diagnosis. The correct insertion depth was rarely achieved by all participants. Interrater reliability for OSATS was strong. IPPI reliability showed good correlation. Conclusion Regardless of training modality, participants perceived learning improvement and skill acquisition. Feedback improved examination performance, indicating simulator-guided training enhances skills. High-fidelity simulator usage in exams provides an objective assessment of performance.

Funder

Universitätsklinikum Tübingen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3