Integration of 3D-printed middle ear models and middle ear prostheses in otosurgical training

Author:

Lähde Sini,Hirsi Yasmin,Salmi Mika,Mäkitie Antti,Sinkkonen Saku T.

Abstract

Abstract Background In otosurgical training, cadaveric temporal bones are primarily used to provide a realistic tactile experience. However, using cadaveric temporal bones is challenging due to their limited availability, high cost, and potential for infection. Utilizing current three-dimensional (3D) technologies could overcome the limitations associated with cadaveric bones. This study focused on how a 3D-printed middle ear model can be used in otosurgical training. Methods A cadaveric temporal bone was imaged using microcomputed tomography (micro-CT) to generate a 3D model of the middle ear. The final model was printed from transparent photopolymers using a laser-based 3D printer (vat photopolymerization), yielding a 3D-printed phantom of the external ear canal and middle ear. The feasibility of this phantom for otosurgical training was evaluated through an ossiculoplasty simulation involving ten otosurgeons and ten otolaryngology–head and neck surgery (ORL-HNS) residents. The participants were tasked with drilling, scooping, and placing a 3D-printed partial ossicular replacement prosthesis (PORP). Following the simulation, a questionnaire was used to collect the participants' opinions and feedback. Results A transparent photopolymer was deemed suitable for both the middle ear phantom and PORP. The printing procedure was precise, and the anatomical landmarks were recognizable. Based on the evaluations, the phantom had realistic maneuverability, although the haptic feedback during drilling and scooping received some criticism from ORL-HNS residents. Both otosurgeons and ORL-HNS residents were optimistic about the application of these 3D-printed models as training tools. Conclusions The 3D-printed middle ear phantom and PORP used in this study can be used for low-threshold training in the future. The integration of 3D-printed models in conventional otosurgical training holds significant promise.

Funder

Tauno Palva foundation

Helsinki University Hospital research fund

University of Helsinki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3