Development of an online authentic radiology viewing and reporting platform to test the skills of radiology trainees in Low- and Middle-Income Countries

Author:

Vesselle Hubert,Chiramal Justy Antony,Hawes Stephen E.,Schulze Eric,Nguyen Tham,Ndumia Rose,Vinayak Sudhir

Abstract

Abstract Background Diagnostic radiology residents in low- and middle-income countries (LMICs) may have to provide significant contributions to the clinical workload before the completion of their residency training. Because of time constraints inherent to the delivery of acute care, some of the most clinically impactful diagnostic radiology errors arise from the use of Computed Tomography (CT) in the management of acutely ill patients. As a result, it is paramount to ensure that radiology trainees reach adequate skill levels prior to assuming independent on-call responsibilities. We partnered with the radiology residency program at the Aga Khan University Hospital in Nairobi (Kenya) to evaluate a novel cloud-based testing method that provides an authentic radiology viewing and interpretation environment. It is based on Lifetrack, a unique Google Chrome-based Picture Archiving and Communication System, that enables a complete viewing environment for any scan, and provides a novel report generation tool based on Active Templates which are a patented structured reporting method. We applied it to evaluate the skills of AKUHN trainees on entire CT scans representing the spectrum of acute non-trauma abdominal pathology encountered in a typical on-call setting. We aimed to demonstrate the feasibility of remotely testing the authentic practice of radiology and to show that important observations can be made from such a Lifetrack-based testing approach regarding the radiology skills of an individual practitioner or of a cohort of trainees. Methods A total of 13 anonymized trainees with experience from 12 months to over 4 years took part in the study. Individually accessing the Lifetrack tool they were tested on 37 abdominal CT scans (including one normal scan) over six 2-hour sessions on consecutive days. All cases carried the same clinical history of acute abdominal pain. During each session the trainees accessed the corresponding Lifetrack test set using clinical workstations, reviewed the CT scans, and formulated an opinion for the acute diagnosis, any secondary pathology, and incidental findings on the scan. Their scan interpretations were composed using the Lifetrack report generation system based on active templates in which segments of text can be selected to assemble a detailed report. All reports generated by the trainees were scored on four different interpretive components: (a) acute diagnosis, (b) unrelated secondary diagnosis, (c) number of missed incidental findings, and (d) number of overcalls. A 3-score aggregate was defined from the first three interpretive elements. A cumulative score modified the 3-score aggregate for the negative effect of interpretive overcalls. Results A total of 436 scan interpretations and scores were available from 13 trainees tested on 37 cases. The acute diagnosis score ranged from 0 to 1 with a mean of 0.68 ± 0.36 and median of 0.78 (IQR: 0.5-1), and there were 436 scores. An unrelated secondary diagnosis was present in 11 cases, resulting in 130 secondary diagnosis scores. The unrelated secondary diagnosis score ranged from 0 to 1, with mean score of 0.48 ± 0.46 and median of 0.5 (IQR: 0–1). There were 32 cases with incidental findings, yielding 390 scores for incidental findings. The number of missed incidental findings ranged from 0 to 5 with a median at 1 (IQR: 1–2). The incidental findings score ranged from 0 to 1 with a mean of 0.4 ± 0.38 and median of 0.33 (IQR: 0- 0.66). The number of overcalls ranged from 0 to 3 with a median at 0 (IQR: 0–1) and a mean of 0.36 ± 0.63. The 3-score aggregate ranged from 0 to 100 with a mean of 65.5 ± 32.5 and median of 77.3 (IQR: 45.0, 92.5). The cumulative score ranged from − 30 to 100 with a mean of 61.9 ± 35.5 and median of 71.4 (IQR: 37.4, 92.0). The mean acute diagnosis scores and SD by training period were 0.62 ± 0.03, 0.80 ± 0.05, 0.71 ± 0.05, 0.58 ± 0.07, and 0.66 ± 0.05 for trainees with ≤ 12 months, 12–24 months, 24–36 months, 36–48 months and > 48 months respectively. The mean acute diagnosis score of 12–24 months training was the only statistically significant greater score when compared to ≤ 12 months by the ANOVA with Tukey testing (p = 0.0002). We found a similar trend with distribution of 3-score aggregates and cumulative scores. There were no significant associations when the training period was categorized as less than and more than 2 years. We looked at the distribution of the 3-score aggregate versus the number of overcalls by trainee, and we found that the 3-score aggregate was inversely related to the number of overcalls. Heatmaps and raincloud plots provided an illustrative means to visualize the relative performance of trainees across cases. Conclusion We demonstrated the feasibility of remotely testing the authentic practice of radiology and showed that important observations can be made from our Lifetrack-based testing approach regarding radiology skills of an individual or a cohort. From observed weaknesses areas for targeted teaching can be implemented, and retesting could reveal their impact. This methodology can be customized to different LMIC environments and expanded to board certification examinations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3