Predicting students’ academic progress and related attributes in first-year medical students: an analysis with artificial neural networks and Naïve Bayes

Author:

Monteverde-Suárez Diego,González-Flores Patricia,Santos-Solórzano Roberto,García-Minjares Manuel,Zavala-Sierra Irma,de la Luz Verónica Luna,Sánchez-Mendiola MelchorORCID

Abstract

Abstract Background Dropout and poor academic performance are persistent problems in medical schools in emerging economies. Identifying at-risk students early and knowing the factors that contribute to their success would be useful for designing educational interventions. Educational Data Mining (EDM) methods can identify students at risk of poor academic progress and dropping out. The main goal of this study was to use machine learning models, Artificial Neural Networks (ANN) and Naïve Bayes (NB), to identify first year medical students that succeed academically, using sociodemographic data and academic history. Methods Data from seven cohorts (2011 to 2017) of admitted medical students to the National Autonomous University of Mexico (UNAM) Faculty of Medicine in Mexico City were analysed. Data from 7,976 students (2011 to 2017 cohorts) of the program were included. Information from admission diagnostic exam results, academic history, sociodemographic characteristics and family environment was used. The main dataset included 48 variables. The study followed the general knowledge discovery process: pre-processing, data analysis, and validation. Artificial Neural Networks (ANN) and Naïve Bayes (NB) models were used for data mining analysis. Results ANNs models had slightly better performance in accuracy, sensitivity, and specificity. Both models had better sensitivity when classifying regular students and better specificity when classifying irregular students. Of the 25 variables with highest predictive value in the Naïve Bayes model, percentage of correct answers in the diagnostic exam was the best variable. Conclusions Both ANN and Naïve Bayes methods can be useful for predicting medical students’ academic achievement in an undergraduate program, based on information of their prior knowledge and socio-demographic factors. Although ANN offered slightly superior results, Naïve Bayes made it possible to obtain an in-depth analysis of how the different variables influenced the model. The use of educational data mining techniques and machine learning classification techniques have potential in medical education.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3