Impact of automatic acquisition of key clinical information on the accuracy of electrocardiogram interpretation: a cross-sectional study

Author:

Guo Shaohua,Zhang Bufan,Feng Yuanyuan,Wang Yajie,Tse Gary,Liu Tong,Chen Kang-Yin

Abstract

Abstract Background The accuracy of electrocardiogram (ECG) interpretation by doctors are affected by the available clinical information. However, having a complete set of clinical details before making a diagnosis is very difficult in the clinical setting especially in the early stages of the admission process. Therefore, we developed an artificial intelligence-assisted ECG diagnostic system (AI-ECG) using natural language processing to provide screened key clinical information during ECG interpretation. Methods Doctors with varying levels of training were asked to make diagnoses from 50 ECGs using a common ECG diagnosis system that does not contain clinical information. After a two-week-blanking period, the same set of ECGs was reinterpreted by the same doctors with AI-ECG containing clinical information. Two cardiologists independently provided diagnostic criteria for 50 ECGs, and discrepancies were resolved by consensus or, if necessary, by a third cardiologist. The accuracy of ECG interpretation was assessed, with each response scored as correct/partially correct = 1 or incorrect = 0. Results The mean accuracy of ECG interpretation was 30.2% and 36.2% with the common ECG system and AI-ECG system, respectively. Compared to the unaided ECG system, the accuracy of interpretation was significantly improved with the AI-ECG system (P for paired t-test = 0.002). For senior doctors, no improvement was found in ECG interpretation accuracy, while an AI-ECG system was associated with 27% higher mean scores (24.3 ± 9.4% vs. 30.9 ± 10.6%, P = 0.005) for junior doctors. Conclusion Intelligently screened key clinical information could improve the accuracy of ECG interpretation by doctors, especially for junior doctors.

Funder

Tianjin Natural Science Foundation

Academic Backbone of “Clinical Talent Training and Climbing Plan” of Tianjin Medical University

Sponsored by Tianjin Health Research Project

Publisher

Springer Science and Business Media LLC

Subject

Education,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3