Performance and time improvement of LT code-based cloud storage

Author:

Chakani Nastaran,Mirrezaei Seyed MasoudORCID,Hodtani Ghosheh Abed

Abstract

AbstractOutsourcing data on cloud storage services has already attracted great attention due to the prospect of rapid data growth and storing efficiencies for customers. The coding-based cloud storage approach can offer a more reliable and faster solution with less storage space in comparison with replication-based cloud storage. LT codes are the famous member of the rateless code family that can improve performance of storage systems utilizing good degree distributions. Since degree distribution plays a key role in LT codes performance, recently introduced Poisson robust soliton distribution (PRSD) and combined Poisson robust soliton distribution (CPRSD) motivate us to investigate LT code-based cloud storage system. So, we exploit LT codes with new degree distributions to provide lower average degree and higher decoding efficiency, specifically when receiving fewer encoding symbols, compared with popular degree distribution, robust soliton distribution (RSD). In this paper, we show that proposed cloud storage outperforms traditional ones in terms of storage space and robustness encountering unavailability of encoding symbols, due to compatible properties of PRSD and CPRSD with cloud storage essence. Furthermore, a modified decoding process is presented based on required encoding symbols behavior to reduce data retrieval time. Numerical results confirm improvement of cloud storage performance.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3