Simplified clustering and improved intercluster cooperation approach for wireless sensor network energy balanced routing

Author:

Yao Yanxin,Chen WeiORCID,Guo Jie,He Xiaoyu,Li Ruixuan

Abstract

AbstractThe equilibrium use of energy is very important for wireless sensor networks (WSN) with limited energy in order to avoid premature network collapse. The existing methods either need too complex calculations for precise clustering, or are too simple to overburden a few cluster heads. In order to solve these problems, we proposed energy balanced clustering routing (EBCR) in this paper. It could maximize the WSN life in energy non-harvesting scenario or improve energy utilization efficiency in energy harvesting scenario without increasing the amount of calculations. It gives a complete solution to the process of cluster head election, clustering, and intercluster routing algorithm. Firstly, a light weight cluster head election and a distributed cluttering method are proposed by introducing dynamic cluster radius and intersection region node division schemes with new principles. Thus, lightweight distributed clustering achieves the advantages of balancing the burden of cluster heads and alleviating hot zone problem. Then we optimized the cluster cooperative routing algorithm by analyzing cooperation and competition among cluster heads. The intercluster cooperative routing algorithm greatly improves the transmission efficiency between cluster heads. Moreover, this paper analyzes the reasons why the algorithm achieves more balanced energy usage, higher energy efficiency, and fewer calculations compared to the existing mainstream algorithms. At last, simulation results show that EBCR algorithm has advantages in terms of network energy consumption, number of surviving nodes in energy non-harvesting scenario compared with the delay-constrained energy-efficient cluster-based multi-hop routing (DCEM) method. Simulation also gives EBCR algorithm performance under various energy harvesting scenarios, which is quite satisfactory in energy utilization efficiency comparing with DCEM method. EBCR algorithm has superior performance in terms of balanced energy usage, low computation complexity, and high energy efficiency.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China and Shanxi Provincial People's Government Jointly Funded Project of China for Coal Base and Low Carbon

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-Efficient Clustering Algorithm Analysis for Intelligent Marine Ecosystem Monitoring;2024 International Conference on Renewable Energies and Smart Technologies (REST);2024-06-27

2. Energy-efficient Cluster Routing Algorithm Based on Equivalent Equilibrium Mechanism;2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA);2023-05-26

3. Nonmetaheuristic Methods for Group Leader Selection, Cluster Formation and Routing Techniques for WSNs: A Review;Algorithms for Intelligent Systems;2023

4. Machine learning and deep learning methods for wireless network applications;EURASIP Journal on Wireless Communications and Networking;2022-11-29

5. Heterogeneous load balancing improvement on an energy-aware distributed unequal clustering protocol using BBO algorithms;Wireless Networks;2022-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3