Residual energy maximization for NOMA-enabled UAV-assisted data collection network: trajectory optimization and resource allocation

Author:

Du YuORCID,Guo Yijun,Hao Jianjun,Zhu Hao

Abstract

AbstractIn this paper, we concentrate on a non-orthogonal multiple access (NOMA)-enabled UAV data collection network for Internet of Things devices (IoTDs), where a unmanned aerial vehicle (UAV) is deployed as an aerial base station. During its flight period, the UAV can collect data from IoTDs and take advantage of the simultaneous wireless information and power transfer technology to charge the batteries of IoTDs. With the aid of NOMA, spectrum efficiency has been improved. We aim to prolong the lifetime of the IoT network, via jointly optimizing the UAV trajectory, the time allocation for information communication and wireless power transfer, the IoTDs’ transmit power, as well as the IoTDs’ group scheduling for NOMA. Then, we use the block coordinate decent and successive convex approximation techniques to tackle the non-convexity of the formulated problem. Numerical results show that the proposed solution increases the residual energy of the IoTDs, thus prolonging the lifetime of the network.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3