Performance analysis of 6LoWPAN protocol for a flood monitoring system

Author:

Gabriel Piñeres-Espitia,Butt Shariq AzizORCID,Francisco Estévez-Ortiz,Alejandro Cama-Pinto,Maleh Yassine

Abstract

AbstractThe internet of things is a disruptive technology that has been applied as a solution to problems in many fields of monitoring environmental variables. It is supported by technologies such as wireless sensor networks, which offer many protocols and hardware platforms in the market today. Protocols such as 6LoWPAN are novel, so this work focuses on determining whether its implementation on TelosB mote is feasible; these would be placed on an experimental deployment for a particular scenario of flash floods in a sector known as “La Brigada”, in the city of Barranquilla. This proposal has not been evaluated in Colombia for this type of application, and no similar work has been done for this type of scenario. For the evaluation of 6LoWPAN, a deployment with two end nodes and a sink node has been designed, due to the monitoring section under study; 5-min tests are proposed where through round trip time traffic PINGv6 packets are generated back and forth (Echo) between a sink node and two end nodes. The results are based on the evaluation of metrics such as delay and ping packet request/response rate. The performance of these metrics is subject to test scenarios that vary according to distance, packet size, and channel scan time. Two routing options, static or dynamic, are also proposed for this application case. The tests performed yielded results in terms of better performance in the test scenarios for packets with an average size of 120 B and channel monitoring times of 1024 ms. Likewise, the use of the TelosB platform was validated as a viable and innovative option for a monitoring scenario to flash floods in short stretches of the city of Barranquilla—Colombia. This study is important because it can provide information on the use of the TelosB platform as a valid solution for similar application scenarios; furthermore, the tests performed can be replicated in similar studies to evaluate congestion, power consumption, routing, topologies, and other metrics. This study is providing a road map for the research community to follow the simulation scenario to apply the test to their own studies. This work also provides the guidelines for similar researchers to monitor the flood in their own regions and then compare their results with this study.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LoRaWAN and 6LoWPAN Simulations in Medium to Large-Scale IoT Applications;2024 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2024-07-04

2. Sensors on the Internet of Things Systems for Urban Disaster Management: A Systematic Literature Review;Sensors;2023-08-28

3. Development of a novel 6LoWPAN‐based multipurpose sensor monitoring and notification system;International Journal of Communication Systems;2023-08-16

4. PQTBA: Priority Queue based Token Bucket Algorithm for congestion control in IoT network;2023 IEEE 8th International Conference for Convergence in Technology (I2CT);2023-04-07

5. Modeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments: A Systematic Literature Review;Sensors;2022-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3