Planning capacity for 5G and beyond wireless networks by discrete fireworks algorithm with ensemble of local search methods

Author:

Ali Hafiz Munsub,Liu Jiangchuan,Ejaz Waleed

Abstract

AbstractIn densely populated urban centers, planning optimized capacity for the fifth-generation (5G) and beyond wireless networks is a challenging task. In this paper, we propose a mathematical framework for the planning capacity of a 5G and beyond wireless networks. We considered a single-hop wireless network consists of base stations (BSs), relay stations (RSs), and user equipment (UEs). Wireless network planning (WNP) should decide the placement of BSs and RSs to the candidate sites and decide the possible connections among them and their further connections to UEs. The objective of the planning is to minimize the hardware and operational cost while planning capacity of a 5G and beyond wireless networks. The formulated WNP is an integer programming problem. Finding an optimal solution by using exhaustive search is not practical due to the demand for high computing resources. As a practical approach, a new population-based meta-heuristic algorithm is proposed to find a high-quality solution. The proposed discrete fireworks algorithm (DFWA) uses an ensemble of local search methods: insert, swap, and interchange. The performance of the proposed DFWA is compared against the low-complexity biogeography-based optimization (LC-BBO), the discrete artificial bee colony (DABC), and the genetic algorithm (GA). Simulation results and statistical tests demonstrate that the proposed algorithm can comparatively find good-quality solutions with moderate computing resources.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3