An efficient data collection path planning scheme for wireless sensor networks with mobile sinks

Author:

Chang Jau-Yang,Jeng Jin-Tsong,Sheu Yung-Hoh,Jian Z.-Jie,Chang Wei-Yeh

Abstract

AbstractWireless sensor networks with mobile sinks enable a mobile device to move into the sensing area for the purpose of collecting the sensing data. Mobile sinks increase the flexibility and convenience of data gathering in such systems. Taking the energy consumption of the mobile sink into account, the moving distance of the mobile sink must be reduced efficiently. Hence, it is important and necessary to develop an efficient path planning scheme for mobile sinks in large-scale wireless sensor network systems. According to several greedy-based algorithms, we adopt an angle bisector concept to create the moving path for the mobile sink. In this paper, a novel and efficient data collection path planning scheme is proposed to reduce the moving distances and to prolong the lifetimes of mobile sinks in wireless sensor networks. Considering the communication range limitations of sensor nodes and the obstacles within sensing areas, we design an inner center path planning algorithm to reduce the moving distance for the mobile sink. A back-routing avoidance method is included to address the moving path backpropagation problem. We account for the obstacles in sensing area. The reference point of obstacle avoidance is employed to address the obstacle problem. The proposed scheme makes an adaptive decision for creating the moving path of the mobile sink. A suitable moving path planning scheme can be achieved, and the moving distance of the mobile sink can be reduced. The proposed scheme is promising in large-scale wireless sensor networks. When the number of sensor nodes in the sensing area is increased by 50, the proposed scheme yields an average moving distance that is 1.1 km shorter than that of the heuristic tour-planning algorithm, where the sensing area is 5 km × 5 km. Simulation results demonstrate that the proposed data collection path planning scheme outperforms the previously developed greedy-based scheme in terms of the moving paths and moving distances of mobile sinks in wireless sensor networks.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference36 articles.

1. W.Z. Khan, M.H. Rehman, H.M. Zangoti, M.K. Afzal, N. Armi, K. Salah, Industrial internet of things: Recent advances, enabling technologies and open challenges. Comput. Electr. Eng. 81, 1–13 (2020)

2. N.A. Pantazis, S.A. Nikolidakis, D.D. Vergados, Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commu Surv Tutor 15(2), 551–591 (2013)

3. M.H. Khodashahi, F. Tashtarian, M.H.Y. Mohammad, M.T. Honary, in Proceedings IEEE Wireless Communications and Networking Conference (WCNC), Optimal Location for Mobile Sink in Wireless Sensor Networks (2010), pp. 1–6.

4. C.F. Wang, J.D. Shih, B.H. Pan, T.Y. Wu, A network lifetime enhancement method for sink relocation and its analysis in wireless sensor networks. IEEE Sens. J. 14(6), 1932–1943 (2014)

5. H. Salarian, K.-W. Chin, F. Naghdy, An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2014)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3