An efficient authentication and key agreement protocol for IoT-enabled devices in distributed cloud computing architecture

Author:

Huang HuihuiORCID,Lu Siqi,Wu Zehui,Wei Qiang

Abstract

AbstractWith the widespread use of Internet of Things and cloud computing in smart cities, various security and privacy challenges may be encountered.The most basic problem is authentication between each application, such as participating users, IoT devices, distributed servers, authentication centers, etc. In 2020, Kang et al. improved an authentication protocol for IoT-Enabled devices in a distributed cloud computing environment and its main purpose was in order to prevent counterfeiting attacks in Amin et al.’ protocol, which was published in 2018. However, We found that the Kang et al.’s protocol still has a fatal vulnerability, that is, it is attacked by offline password guessing, and malicious users can easily obtain the master key of the control server. In this article, we extend their work to design a lightweight pseudonym identity based authentication and key agreement protocol using smart card. For illustrating the security of our protocol, we used the security protocol analysis tools of AVISPA and Scyther to prove that the protocol can defend against various existing attacks. We will further analyze the interaction between participants authentication path to ensure security protection from simulated attacks detailedly. In addition, based on the comparison of security functions and computing performance, our protocol is superior to the other two related protocols. As a result, the enhanced protocol will be efficient and secure in distributed cloud computing architecture for smart city.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3