Cooperative coverage-based lifetime prolongation for microgrid monitoring WSN in smart grid

Author:

Shao Sujie,Wu Lei,Zhang Qinghang,Zhang Neng,Wang Kaixuan

Abstract

AbstractTo take full advantage of the flexibility of access and disconnection from smart grid, organizing distributed renewable energy resources in form of microgrid becomes one solution of energy replenishment in smart grid. A large amount of accurate and comprehensive information data are needed to be monitored by a variety of different types of sensors to guarantee the effective operation of this kind of microgrid. Energy consumption of microgrid monitoring WSN consequently becomes an issue. This paper presents a novel lifetime prolongation algorithm based on cooperative coverage of different types of sensors. Firstly, according to the requirements of monitoring business, the construction of cooperative coverage sets and connected monitoring WSN are discussed. Secondly, energy consumption is analyzed based on cooperative coverage. Finally, the cooperative coverage-based lifetime prolongation algorithm (CC-LP) is proposed. Both the energy consumption balancing inside the cooperative coverage set and the switching scheduling between cooperative coverage sets are discussed. Then, we draw into an improved ant colony optimization algorithm to calculate the switching scheduling. Simulation results show that this novel algorithm can effectively prolong the lifetime of monitoring WSN, especially in the monitoring area with a large deployed density of different types of sensors.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Privacy-Preserving Mobile-Coverage Scheme Based on Trustworthiness in HWSNs;Wireless Communications and Mobile Computing;2021-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3