Abstract
AbstractIn this paper, we consider a wireless powered cognitive relaying system with a secondary relay (SR) capable of harvesting wireless energy. Along with an access point (AP) continuously transmitting the primary data to a primary user (PU), a secondary source (SS) can transmit the secondary data to a secondary destination (SD) with the help of SR using the decode-and-forward (DF) protocol. SR can harvest energy from both SS and AP in both time and power domains using time-splitting and power-splitting techniques. The interference from primary data transmissions can help boost the amount of harvested energy at SR. The transmit power of SS is regulated by the interference threshold at PU and the allowable peak power. Despite the above two constraints, the transmit power of SR is further constrained by the amount of harvested energy. Once SR successfully decodes the data from SS, it will forward the data to SD using a constrained power. We analyze the approximate outage probabilities for both primary and secondary systems. Simulation results are provided to verify the effectiveness of our theoretical analysis and reveal the impacts of various parameters to the outage performance.
Funder
shandong provincial natural science foundation
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献