Performance analysis of user association strategy based on power-domain non-orthogonal multiple access in visible light communication multi-cell networks

Author:

Tao Siyu,Yu Hongyi,Li Qing,Tang Yanqun

Abstract

AbstractA multi-cell visible light communication (VLC) network with non-orthogonal multiple access (NOMA) introduces an inter-cell interference (ICI), which causes poor experience of overlap-area user association. In this study, we focus on the strategic analysis of user association in multi-cell NOMA-VLC networks and reveal the relationship between the performance of user association and visible-light cell deployment. First, we establish the model of power-domain NOMA in multiple cells of VLC. Second, when the principle of proximity access (PPA) considers channel attenuation, we present the violation of the principle of proximity access (VPPA) based on signal-to-interference-plus-noise ratio (SINR) and derive a closed-form sufficient condition for overlap-area users based on the visible light channels. Third, based on the sufficient condition, we perform the strategic analysis of user association in two cases, i.e., the scenario probability with different numbers of users and the probability of the ratio of channel gains with an edge user are deduced. In addition, we evaluate the performance of user association by the deployment of lighting angles and inter-cell distance. Finally, the simulation results indicate that the VPPA achieves better data rate performance than the PPA based on the sufficient condition. Furthermore, the probability distributions in numerical results show that the situations with the VPPA reach a certain scale of occurrence probability.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3