Toward green computing in wireless sensor networks: prediction-oriented distributed clustering for non-uniform node distribution

Author:

Sikandar Ajay,Agrawal Rajeev,Tyagi Manoj Kumar,Rao A. L. Narasimha,Prasad MukeshORCID,Binsawad Muhammad

Abstract

AbstractRecently, researchers and practitioners in wireless sensor networks (WSNs) are focusing on energy-oriented communication and computing considering next-generation smaller and tiny wireless devices. The tiny sensor-enabled devices will be used for the purpose of sensing, computing, and wireless communication. The hundreds/thousands of WSNs sensors are used to monitor specific activities and report events via wireless communication. The tiny sensor-enabled devices are powered by smaller batteries to work independently in distributed environments resulting in limited maximum lifetime of the network constituted by these devices. Considering the non-uniform distribution of sensor-enabled devices in the next-generation mobility centric WSNs environments, energy consumption is imbalanced among the different sensors in the overall network environments. Toward this end, in this paper, a cluster-oriented routing protocol termed as prediction-oriented distributed clustering (PODC) mechanism is proposed for WSNs focusing on non-uniform sensor distribution in the network. A network model is presented, while categorizing PODC mechanism in two activities including setting cluster of nodes and the activity in the steady state. Further cluster set up activity is described while categorizing in four subcategories. The proposed protocol is compared with individual sensor energy awareness and distributed networking mode of clustering (EADC) and scheduled sensor activity-based individual sensor energy awareness and distributed networking mode of clustering (SA-ADC). The metrics including the overall lifetime of the network and nodes individual energy consumption in realistic next-generation WSNs environments are considered in the experimental evaluation. The results attest the reduced energy consumption centric benefits of the proposed framework PODC as compared to the literature. Therefore, the framework will be more applicable for the smart product development in the next-generation WSNs environments.

Funder

King Abdulaziz University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3