Location-aided uplink transmission for user-centric cell-free massive MIMO systems: a fairness priority perspective

Author:

Wei Chen,Xu KuiORCID,Shen Zhexian,Xia Xiaochen,Xie Wei,Li Chunguo

Abstract

AbstractIn this paper, we investigate the uplink transmission for user-centric cell-free massive multiple-input multiple-output (MIMO) systems. The largest-large-scale-fading-based access point (AP) selection method is adopted to achieve a user-centric operation. Under this user-centric framework, we propose a novel inter-cluster interference-based (IC-IB) pilot assignment scheme to alleviate pilot contamination. Considering the local characteristics of channel estimates and statistics, we propose a location-aided distributed uplink combining scheme to balance the relationship among the spectral efficiency (SE), user equipment (UE) fairness and complexity, in which local partial minimum mean-squared error (LP-MMSE) combining is adopted for some APs, while maximum-ratio (MR) combining is adopted for the remaining APs. A corresponding AP selection scheme based on a novel proposed metric representing inter-user interference is proposed. We also propose a new fairness coefficient taking SE performance into account to indicate the UE fairness. Moreover, the performance of the proposed scheme is investigated under fractional power control and max–min fairness (MMF) power control. Simulation results demonstrate that the channel estimation accuracy of our proposed IC-IB pilot assignment scheme outperforms that of the conventional pilot assignment schemes. It is also shown that compared with the benchmark LP-MMSE combining, the proposed location-aided combining trades 13.45$$\%$$ % average SE loss for 26.61$$\%$$ % UE fairness improvement and 28.58$$\%$$ % complexity reduction when $$\gamma = 0.6$$ γ = 0.6 . And by adjusting the threshold $$\gamma$$ γ , a good trade-off between the average SE, UE fairness and computational complexity can be provided by the proposed scheme. Furthermore, the proposed scheme with fractional power control can better demonstrate the advantages of trade-off performance than MMF power control and full power transmission.

Funder

National Natural Science Foundation of China

Basic Research Project of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Natural Science Foundation for Young Scientists of Shanxi Province

Anhui Provincial Key Research and Development Plan

Key Research and Development Plan of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3