A driver’s car-following behavior prediction model based on multi-sensors data

Author:

Wang Hui,Gu Menglu,Wu Shengbo,Wang ChangORCID

Abstract

AbstractThe prerequisite for the effective operation of vehicle collision warning system is that the necessary operation is not implemented. Therefore, the behavior prediction that the driver should perform when the preceding vehicle braking is the key to improve the effectiveness of the warning system. This study was conducted to acquire characteristics in the car-following behavior when confronted by the braking of the preceding vehicle, including the reaction time and operation behavior, and establish a behavior prediction model. A driving experiment on the expressway was conducted using devices, such as millimeter-wave radars and controller area network (CAN) bus data, to acquire 845 segments of car following when the brake lamps of the car ahead are on. Data analysis demonstrates that the mean of time distance of car following, mean of car-following distance, and time-to-collision (TTC) mean are closely related with whether or not the driver slowed the car down. The operation states of the driver were divided into keeping the unchanged state of the degree of accelerator pedal opening, loosening of accelerator pedal without braking, braking, and other special situations with the input variables of car-following distance, speed of driver’s car, relative speed, time distance, and TTC using the support vector machine (SVM) method to build a prediction model for the operation behavior of the driver. The verification result showed that the model predicts driving behavior with an accuracy rate of 80%. It reflects the actual decision-making process of the driver, especially the normal operation of the driver, to loosen the accelerator pedal without braking. This model can help to optimize the algorithm of the rear-end accident warning system and improve intelligent system acceptance.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3