Abstract
AbstractFog computing, as a new distributed computing framework, extends the tasks originally done in the cloud data center to the edge of the network and brings more serious security challenges while providing convenience. Abnormal network traffic detection is an effective means to defense malicious behavior, can detect a variety of known attacks. Although the application of deep learning method in the field of network abnormal traffic detection is easier than traditional machine learning methods, there are still problems of poor recognition accuracy and false alarm rate. In this paper, we use the semi-supervised network anomaly detection model (NADLA) that combines the long-short-term memory neural network method and the self-encoder method to solve this problem. NADLA analyzes network traffic through the time characteristics and behavior characteristics of traffic, and optimizes the accuracy and false alarm rate of network traffic classification. In addition, we improved the preprocessing method to improve the sensitivity of the trained model to network abnormal traffic. The NADLA model is tested on NSL-KDD dataset, and the results show that the proposed model can improve the accuracy and F1-value of network anomaly traffic detection.
Funder
Natural Science Foundation of Shanghai
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference63 articles.
1. M. Cui, D. Han, J. Wang, An efficient and safe road condition monitoring authentication scheme based on fog computing. IEEE Internet Things J. 6(5), 9076–9084 (2019)
2. M. Cui, D. Han, J. Wang, K.-C. Li, C.-C. Chang, Arfv: an efficient shared data auditing scheme supporting revocation for fog-assisted vehicular ad-hoc networks. IEEE Trans. Veh. Technol. 69(12), 15815–15827 (2020)
3. H. Li, D. Han, M. Tang, A privacy-preserving charging scheme for electric vehicles using blockchain and fog computing. IEEE Syst. J. 15(3), 3189–3200 (2020)
4. D. Han, N. Pan, K.-C. Li, A traceable and revocable ciphertext-policy attribute-based encryption scheme based on privacy protection. IEEE Trans. Depend. Secure Comput. (2020)
5. T. Xiao, D. Han, J. He, K.-C. Li, R.F. de Mello, Multi-keyword ranked search based on mapping set matching in cloud ciphertext storage system. Connect. Sci. 33(1), 95–112 (2021)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献