Network abnormal traffic detection method based on fusion of chord similarity and multiple loss encoder

Author:

Lv XiangORCID,Han Dezhi,Li DunORCID,Xiao Lijun,Chang Chin-Chen

Abstract

AbstractFog computing, as a new distributed computing framework, extends the tasks originally done in the cloud data center to the edge of the network and brings more serious security challenges while providing convenience. Abnormal network traffic detection is an effective means to defense malicious behavior, can detect a variety of known attacks. Although the application of deep learning method in the field of network abnormal traffic detection is easier than traditional machine learning methods, there are still problems of poor recognition accuracy and false alarm rate. In this paper, we use the semi-supervised network anomaly detection model (NADLA) that combines the long-short-term memory neural network method and the self-encoder method to solve this problem. NADLA analyzes network traffic through the time characteristics and behavior characteristics of traffic, and optimizes the accuracy and false alarm rate of network traffic classification. In addition, we improved the preprocessing method to improve the sensitivity of the trained model to network abnormal traffic. The NADLA model is tested on NSL-KDD dataset, and the results show that the proposed model can improve the accuracy and F1-value of network anomaly traffic detection.

Funder

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3