SMOTE-Boost-based sparse Bayesian model for flood prediction

Author:

Wu Yirui,Ding Yukai,Feng Jun

Abstract

AbstractWith a significant development of big data analysis and cloud-fog-edge computing, human-centered computing (HCC) has been a hot research topic worldwide. Essentially, HCC is a cross-disciplinary research domain, in which the core idea is to build an efficient interaction among persons, cyber space, and real world. Inspired by the improvement of HCC on big data analysis, we intend to involve related core and technologies to help solve one of the most important issues in the real world, i.e., flood prediction. To minimize the negative impacts brought by floods, researchers pay special attention to improve the accuracy of flood forecasting with quantity of technologies including HCC. However, historical flood data is essentially imbalanced. Imbalanced data causes machine learning classifiers to be more biased towards patterns with majority samples, resulting in poor classification of pattern with minority samples. In this paper, we propose a novel Synthetic Minority Over-sampling Technique (SMOTE)-Boost-based sparse Bayesian model to perform flood prediction with both high accuracy and robustness. The proposed model consists of three modules, namely, SMOTE-based data enhancement, AdaBoost training strategy, and sparse Bayes model construction. In SMOTE-based data enhancement, we adopt a SMOTE algorithm to effectively cover diverse data modes and generate more samples for prediction pattern with minority samples, which greatly alleviates the problem of imbalanced data by involving experts’ analysis and users’ intentions. During AdaBoost training strategy, we propose a specifically designed AdaBoost training strategy for sparse Bayesian model, which not only adaptively and inclemently increases prediction ability of Bayesian model, but also prevents its over-fitting performance. Essentially, the design of AdaBoost strategy helps keep balance between prediction ability and model complexity, which offers different but effective models over diverse rivers and users. Finally, we construct a sparse Bayesian model based on AdaBoost training strategy, which could offer flood prediction results with high rationality and robustness. We demonstrate the accuracy and effectiveness of the proposed model for flood prediction by conducting experiments on a collected dataset with several comparative methods.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3