Diversity-aware unmanned vehicle team arrangement in mobile crowdsourcing

Author:

Li Yu,Feng Haonan,Peng Zhankui,Zhou Li,Wan Jian

Abstract

AbstractWith the continuous development of mobile edge computing and the improvement of unmanned vehicle technology, unmanned vehicle could handle ever-increasing demands. As a significant application of unmanned vehicle, spatial crowdsourcing will provide an important application scenario, which is about to organize a lot of unmanned vehicle to conduct the spatial tasks by physically moving to its locations, called task assignment. Previous works usually focus on assigning a spatial task to one single vehicle or a group of vehicles. Few of them consider that vehicle team diversity is essential to collaborative work. Collaborative work is benefits from organizing teams with various backgrounds vehicles. In this paper, we consider a spatial crowdsourcing scenario. Each vehicle has a set of skills and a property. The property denotes vehicle’s special attribute (e.g., size, speed or weight). We introduce a concept of entropy to measure vehicle team diversity. Each spatial task (e.g., delivering the take-out, and carrying freight) is under the time and budget constraint, and required a set of skills. We need to assure that the assigned vehicle team is diverse. To address this issue, we first propose a practical problem, called team diversity spatial crowdsourcing (TD-SC) problem which finds an optimal team-and-task assignment strategy. Moreover, we design a framework which includes a greedy with diversity (GD) algorithm and a divide-and-conquer (D&C) algorithm to get team-and-task assignments. Finally, we demonstrate efficiency and effectiveness of the proposed methods through extensive experiments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3