Abstract
AbstractIt is well known that some harmful objects in the Tanner graph of low-density parity-check (LDPC) codes have a negative impact on their error correction performance under iterative message-passing decoding. Depending on the channel and the decoding algorithm, these harmful objects are different in nature and can be stopping sets, trapping sets, absorbing sets, or pseudocodewords. Differently from LDPC block codes, the design of spatially coupled LDPC codes must take into account the semi-infinite nature of the code, while still reducing the number of harmful objects as much as possible. We propose a general procedure, based on edge spreading, enabling the design of good quasi-cyclic spatially coupled LDPC (QC-SC-LDPC) codes. These codes are derived from quasi-cyclic LDPC (QC-LDPC) block codes and contain a considerably reduced number of harmful objects with respect to the original QC-LDPC block codes. We use an efficient way of enumerating harmful objects in QC-SC-LDPCCs to obtain a fast algorithm that spans the search space of potential candidates to select those minimizing the multiplicity of the target harmful objects. We validate the effectiveness of our method via numerical simulations, showing that the newly designed codes achieve better error rate performance than codes presented in previous literature.
Funder
Division of Human Resource Development
Division of Computing and Communication Foundations
Division of Electrical, Communications and Cyber Systems
Jet Propulsion Laboratory
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献