Background perception for correlation filter tracker

Author:

Zhang Yushan,Li Jianan,Wu Fan,Wu Lingyue,Xu TingfaORCID

Abstract

AbstractVisual object tracking is one of the most fundamental tasks in the field of computer vision, and it has numerous applications in many realms such as public surveillance, human-computer interaction, robotics, etc. Recently, discriminative correlation filter (DCF)-based trackers have achieved promising results in short-term tracking problems. Most of them focus on extracting reliable features from the foreground of input images to construct a robust and informative description of the target. However, it is often ignored that the image background which contains the surrounding context of the target is often similar across consecutive frames and thus can be beneficial to locating the target. In this paper, we propose a background perception regulation term to additionally exploit useful background information of the target. Specifically, invalid description of the target can be avoided when either background or foreground information becomes unreliable by assigning similar importance to both of them. Moreover, a novel model update strategy is further proposed. Instead of updating the model by frame, we introduce an output evaluation score, which serves to supervise the tracking process and select high-confidence results for model update, thus paving a new way to avoid model corruption. Extensive experiments on OTB-100 dataset well demonstrate the effectiveness of the proposed method BPCF, which gets an AUC score of 0.689 and outperforms most of the state-of-the-art.

Funder

Major Science Instrument Program of the National Natural Science Foundation of China

General Program of National Nature Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference29 articles.

1. J Henriques, R Caseiro, P Martins, J Batista, in European Conference on Computer Vision. Exploiting the circulant structure of tracking-by-detection with kernels (2012), pp. 702-715.

2. M Danelljan, F. S. Khan, M Felsberg, J. V. D. Weijer, in IEEE Conference on Computer Vision and Pattern Recognition. Adaptive color attributes for real-time visual tracking (2014), pp. 1090–1097.

3. M Danelljan, G Bhat, F. S. Khan, M Felsberg, in IEEE Conference on Computer Vision and Pattern Recognition. ECO: Efficient Convolution Operators for Tracking (2017), pp. 21–26.

4. M Danelljan, A Robinson, F. S. Khan, M Felsberg, in European Conference on Computer Vision. Beyond correlation filters: learning continuous convolution operators for visual tracking (2016), pp. 472-488.

5. R. Yao, S. Xia, F. Shen, Y. Zhou, Q. Niu, Exploiting spatial structure from parts for adaptive kernelized correlation filter tracker. IEEE Signal Process Lett 23, 658–662 (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3